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ABSTRACT 

 

The amount of data that moves through a network at any particular time is referred to as network 

traffic. Data traffic or just plain traffic are other terms for network traffic. The global network traffic 

analysis market is predicted to increase at a compound yearly growth rate of 9.7% from 2021 to 2028, 

reaching USD 5.69 billion by 2028, according to a report by Grand View Research. The COVID-19 

pandemic outbreak and the accompanying lockdowns and limitations enforced in many parts of the 

world have had a minor influence on network traffic analysis. 

Aims: To propose an ensemble learning framework to detect the different attack types. This 

project deals with the development of supervised machine learning algorithms to detect anomalies in 

network traffic from the CIC-IDS2018 dataset. Method: The detection of anomalies in network 

traffic using a supervised machine learning approach comprises five phases. Phase 1 is Data 

Acquisition. In Phase 2 is the Data Preprocessing method, which transforms the dataset and resamples 

the majority and minority of attacks on the dataset (CIC-IDS2018). In Phase 3, embedded-based 

featureselection methods are used to select the important features. In Phase 4, we discuss the 

supervised machine learning models developed with ensemble methods such as bagging (Random 

Forest, Decision Tree, Bagging Classifier) and boosting (Adaptive Boosting, Extreme Gradient, Light 

Gradient Boosting, Histogram-based gradient boosting) and then they are evaluated. The output of 

different algorithms is evaluated in phase 5 with performance measures such as precision, recall, F1 

Score, and accuracy score. It is observed that some models give better accuracy than others, and the 

entire project is developed on the Python platform. Results: From this proposed system, the best 

accuracy was obtained using the first method of Random Forest Feature Selection with the Bagging 

method, the decision tree model was obtained with a 96% accuracy score. In the Boosting method, 

the Light Gradient Boosting model and the Histogram-based gradient boosting model both have a 

96% accuracy score. By using the second method of Gradient Boosting Feature Selection with the 

Boosting method, the highest accuracy was obtained in the Light Gradient Boosting model and 

Histogram-based gradient boosting model with 96% accuracy score. These are ensemble methods and 

models that have better detection rates for multi-class attack classifications. 

 

 

 
 

Keywords: Ensemble Learning, Intrusion Detection, Multi-class Classification, Machine 

Learning, Network Traffic. 



1. INTRODUCTION 
 

1.1 About the Project 

 
In anomaly-based Network Intrusion Detection Systems (NIDS), machine learning techniques 

have been extensively used. Diverse machine learning algorithms, including bagging (Random Forest 

Classifier, Decision Tree Classifier, Bagging Classifier) and boosting (AdaBoost Classifier, Extreme 

Gradient Boosting Classifier, Light Gradient Boosting Classifier, Histogram-based gradient boosting 

classifier), are used to detect intrusions. 

 

However, single machine learning algorithms are no longer sufficient to meet the extensive 

requirements of modern intrusion detection systems. Due to high traffic volume, IDS attacks have 

diversified and are way more sophisticated. Some models can perform well on one type of attack but 

perform poorly on other types of attacks. Hence, a machine learning model with multi-class 

classification for identifying different attacks is the need of the hour. 

 

An ensemble learning-assisted intrusion detection system is developed in this project. Ensemble 

framework-based IDS mostly aims at one-class or a subset of class classification. The proposed IDS 

has high performance at multi-class classification, for identifying different attack classes in a dataset. 

The Canadian Institute for Cybersecurity Intrusion Detection System (CICIDS2018) dataset is used 

in this project. It is a famous dataset with a larger number of features. 



2. METHODOLOGY 

 

A single machine learning classifier cannot be used to detect different attacks effectively. An 

Ensemble approach is used to combine the results of different classifiers. In ensemble-based 

methods, predictions are the results of the major of among the contributing models. In ensemble- 

based methods, all classifiers in the ensemble contribute to the final output regardless of whether the 

algorithm is capable of detecting the attack or not. Thus, to overcome the above drawback and 

increase the attack detection rate for multi-attack classification, It is proposed to develop an ensemble 

framework for attack detection. In this approach, several machine learning classifiers are ranked based 

on their efficiency in detectingvarious attacks. 

The following section elaborates on the workflow of building the machine learning model that 

is used as a testbed. The machine learning model contained three major stages: preprocessing data, 

sampling the majority and minority labels, and classifying target data. Thedetailed activities in each 

stage are depicted in Figure 4.1 

 

 

 
Figure 2.1 : Proposed Methodology 



2.1 Data Collection 

The process of Data collection is collecting datasets from the relevant sources it is used to 

test and evaluate the proposed system, In this project CIC IDS2018 Dataset is used. It is provided by 

Communications Security Establishment (CSE) and the Canadian Institute for Cybersecurity (CIC). 

This dataset is generated for intrusion detection systems, mainly focusing on network-basedanomaly 

detection. CSE-CIC-IDS2018 dataset is originally separated into 10 CSV files based on different 

types of network attacks, including FTP-Brute Force, SSH-Brute Force, Brute Force -Web,Brute 

Force -XSS, SQL Injection, Infiltration, Bot, DoS-Golden Eye, DoS-Slowloris, DoS-Slow HTTP 

Test, DoS-Hulk, DDoS attacks-LOIC-HTTP, DDoS-LOIC-UDP, and DDOS attack-HOIC. 

The attacking infrastructure includes 50 machines and the victim organization has 5 

departments and includes 420 machines, 30 servers with 80 features and approximately sixteen 

million rows are present in this dataset. 

Pandas library provides functions to concatenate and import multiple .csv files into one data 

frame. 

This chapter first introduces common network attacks including brute-force attacks, botnet 

attacks, web attacks, and infiltration attacks. All listed attacks are explained in terms of 

characteristics and detection techniques. This chapter also discusses three feature selection methods: 

filter method, wrapper method, and embedded method. The differences between the three kinds of 

feature selection methods are explained. 

 
 

Network Attacks 

 
Network attacks are further classified into types presented as follows, 

 

• Brute-Force 

 

• Botnet 

 

• Web Attacks 

 

• Infiltration 

 

• Denial-of-Service 

 

• Distributed Denial-Of-Service 

 

• Heartbleed Attack 



a) Brute-Force 

 
The brute-force attack has been used frequently within the network. However, it is not 

difficult to detect this type of attack. The intrusion detection system could effectively detect the 

exhaustive key search-based brute-force attack by setting the utmost number of login attempts. 

The exhaustive key search attack requires the hackers to undertake all the potential combinations 

of passwords within the key space until the correct key is found. 

 

When the maximum number of login attempts is reached, the intrusion detection system will 

detect the abnormal activity and raise the alarm. Therefore, the account would be locked to 

prevent further attempts by hackers. However, the password-spray attack overcomes the 

disadvantage of the exhaustive key search. It allows the hackers to repeatedly try the identical 

password for various accounts to avoid being alerted by the utmost attempts policy that would be 

activated by multiple unsuccessful login attempts on the identical account. However, the advance 

of password-spray attacks makes it difficult to detect. There is another approach that was 

introduced to detect brute force attacks. 

 

b) Botnet 

 
A common approach for detecting botnet attack is to investigate the network traffic. The 

typical attributes of network traffic include the source and destination address, the protocols, the 

related port numbers, the duration of the session, the amount of incoming and outgoing packets, 

andthe cumulative size of the transmitted packets. The detector usually checks the IP addresses 

of network traffic to determine if the IP addresses are identified as suspicious addresses with 

abnormalactivities before. 

The bots, the compromised computers, often use the particular protocol and associated port 

toascertain the communication with one another or infect other target computers. For instance, 

port 25 for SMTP, port 80 for HTTP, port 6667 for IRC, and port 53 for DNS. Counting the 

packets transmitted within the network and their size shows the significant meaning for detecting 

the communications between bots or between bot and target. It could indicate the weird behavior 

of the botnet attack by showing the huge amount of information transmission within a 

comparatively in need of time, multiple packets of identical size, and many more. 



c) Web Attacks 

 

The development of online applications makes the web more functional and productive. People 

could access many software applications through the web and store the info online. The common 

web applications that individuals may use daily are online office suites, online video streaming 

platforms, webmail, e-commerce platform, etc. 

But the sensitive data of users handled by these web applications could also be threatened by 

the net attacks. Web attacks aim to interrupt the safety of web services by using the weakness of the 

programs and hijacking the information traffic between the client and server. 

There are two kinds of common web attacks, 

• XSS attack 

• SQL injection 

XSS attack 

An XSS attack is targeting to take advantage of the communication between the top users and 

web applications through the malicious script. The XSS attack may be launched to get users’ cookie 

information by injecting malicious scripts into the HTML content of an online page. When the user 

accesses this website, the malicious script would be activated and steal the user’s cookie. The cookie 

information may reveal users’ sensitive information, like username and password. 

SQL injection 

SQL injection allows the hackers to manage the SQL database that is connected to the net 

application by injecting a SQL query through user input. The hackers discover the vulnerable user 

input of an online page that directly uses user input in SQL queries. After changing the SQL code, 

the hackers may retrieve, modify, or even delete the data within the database. 

d) Infiltration 

 

By observing the software released on the net, none of them is perfectly secure without any 

vulnerability. However, the hackers may use the weaknesses of the software to interrupt the victims' 

computers and launch attacks from within the interior network. The hackers may target various 

software, including document viewers, application programs, program development tools, and many 

more. The malware will infect users’ computers through the vulnerable software. Then the hackers 

launch the port scanning attack to find other potential victims within the internal network. 



The port scanning attacks identify the potential victims by sending packets to the hosts within 

the network through every possible port. The status of the ports is going to be acknowledged by 

checking the responses. They are either open or closed. The response packets also contain the target 

information, for example, the IP address and protocol. Leaked information is also employed by 

hackers to launch more network attacks. 

 

Even though there are many types of port scanning attacks, they all attack similar targets. The 

common features that are accustomed to detecting port scanning attacks contain protocols, port 

numbers, IP addresses, and TCP flags. The port scanning attacks will be employed on transport layer 

protocols including TCP, UDP, ICMP, and IP. They will be performed against a single port from 

multiple IPs, and multiple ports will be scanned by one IP further. Since TCP connections are 

established during the attack and different TCP flags are used for various types of port scanning 

attacks, TCP flags become one of the special characteristics of the port scanning attack. 

 

e) Denial-of-Service 

Detection of Denial of Service This is often addressed in flow-based intrusion detection. Because 

of their nature, these attacks can cause variations in traffic volume that are usually visible at flow scale. 

There are several attack categories under denial-of-service attacks, which are, 

 

• DoS-Slowloris 

• DoS-Golden Eye 

• DoS-Slow HTTP Test 

• DoS-Hulk 

 
DoS-Slowloris 

Slowloris attacks are also referred to as Slow GET or Slow Header. This attack allows a single 

machine to take down another machine's web server while using minimal bandwidth and causing 

unassociated services and ports to fail. In this scenario, it uses a Slowloris Perl-based instrument to 

request the offline server. 

The HTTP get request is routed to the specified server. This request cannot be validly terminated 

as it lacks the terminating character r\n\r\n (double line break). The server anticipates the next request, 

which will include a destroying character. The server configuration limits this waiting. The server 

terminates the TCP connection when the timer expires. 



DoS-Golden Eye 

GoldenEye is a DoS testing tool for HTTP/S Layer. Keep Alive (as well as Connection: keep- 

alive) options, in conjunction with Cache-Control options, are used to keep the socket connection 

smashing via caching until it consumes all obtainable sockets on the HTTP/S server. GoldenEye is a 

capable and highly recommended technique to investigate malware-related issues. It can detect 

malware's condition and sensitive quirks in advanced running and select the malware's likely targeted 

settings. It can also switch its framework conditions online adaptively to promote testing. 

GoldenEye can effectively determine the malware's intended environment by using a specific 

conjectural implementation engine to observe malware practices in elective situations. 

DoS-Slow HTTP Test 

• Slow HTTP Test is really a highly customizable tool for simulating application-level- 

level Denial of Service attacks (DoS attacks). 

• Slowloris is one of the most common low-bandwidth application level Denial of 

Service attacks. 

• HTTP POST is slow. 

 

• Slow Read attack (based on TCP persist timer exploit) by draining concurrent 

connections pool. Apache Range Header attack by causing extremely high memory 

and CPU usage on the server. 

DoS-Hulk 

• HULK is a Denial of Service (DoS) program that targets web servers by creating disguised and 

unique traffic volumes. 

• HULK traffic skips caching engines and goes straight to the server's direct pool of resources. 

 
f) Distributed Denial-Of-Service 

 
Distributed Denial of Service (DDoS), that targets at server within the volume of useless 

traffic from distributed and coordinated attack sources, are a major threat to the stability of the 

Internet. 

Several types of Distributed Denial-Of-Service are, 

• DDOS attack-HOIC 

• DDoS attacks-LOIC-HTTP 

• DDoS-LOIC-UDP 



DDoS attack-HOIC 

 
• The High Orbit Ion Cannon (HOIC) is a BASIC-based network training and denial-of-service 

attack application that can simultaneously attack up to 256 URLs. 

• Praetox Technologies' Low Orbit Ion Cannon will be replaced by it. In this example, the HOIC 

framework is utilised to launch a DDoS attack from four different workstations. 

 
g) Heartbleed Attack 

 
One of the foremost famous tools to need the advantage of Heartbleed is Heart leech. It can 

scan forsystems in danger of the bug, and might then be accustomed to exploiting them and 

exfiltrating data. 

Some important features: 

• Conclusive/inconclusive verdicts on whether the target is vulnerable 

• Automatic retrieval of personal keys with no additional steps 

• Some limited IDS evasion 

• IPv6 support 

• Bulk/fast download of Heartbleed data into an oversized file for offline processing 

usingmany threads 

• Tor/Socks5n proxy support 

• Extensive connection diagnostic information 

• STARTTLS support 



2.1.1 Dataset Description 

 
Dataset description describes the features present in it, in 2.1 tabular column gives elaborate 

explanation of features. 

Table 4.1 Feature and Feature description of the CIC-IDS2018 dataset 
 

 
S.No Feature Name Description 

1. FL_DUR Duration of the flow 

2. TOT_FW_PK Total number of packets sent in the forward direction 

3. TOT_BW_PK Total packets in the reverse direction 

4. TOT_L_FW_PKT Total packet size in the forward direction 

5. FW_PKT_L_MAX Maximum packet size in the forward direction 

6. FW_PKT_L_MIN Minimum packet size in the forward direction 

7. FW_PKT_L_AVG Average packet size in the forward direction 

8. FW_PKT_L_STD Packet size standard deviation in the forward direction 

9. BW_PKT_L_MAX Maximum packet size in the reverse direction 

10. BW_PKT_L_MIN Minimum packet size in the reverse direction 

11. BW_PKT_L_AVG Mean packet size in the reverse direction 

12. BW_PKT_L_STD Packet size standard deviation in the reverse direction 

13. FL_BYT_S flow packets rate, which is the number of packets 

transferred per second 

14. FL_PKT_S flow byte rate, which is the number of packets 

transferred per second 

15. FL_IAT_AVG Time difference between two flows 

16. FL_IAT_STD Time two standard deviation flows 

17. FL_IAT_MAX The longest possible time between two flows 



18. FL_IAT_MIN The shortest possible time between two flows 

19. FW_IAT_TOT Total time elapsed between two packets sent 

forward 

20. FW_IAT_AVG The average time between two packets sent 

forward 

21. FW_IAT_STD Time difference between two packets sent in the 

forward direction 

22. FW_IAT_MAX The longest possible time between two packets sent in 

the forward direction. 

23. FW_IAT_MIN The shortest possible time between two packets sent in 

the forward direction. 

24. BW_IAT_TOT Total time elapsed between two packets sent in the 

reverse direction 

25. BW_IAT_AVG The average time between two packets sent in the 

opposite direction. 

26. BW_IAT_STD Time difference between two packets sent in the reverse 

direction 

27. BW_IAT_MAX Maximum time interval between two packets 

sent in the reverse direction 

28. BW_IAT_MIN The shortest possible time between two 

packets sent in the reverse direction. 

29. FW_PSH_FLAG The number of times the PSH flag was set in 

packets travelling forward (0 for UDP) 

30. BW_PSH_FLAG The number of times the PSH flag was set in 

packets travelling backward (0 for UDP) 

31. FW_URG_FLAG The number of times the URG flag has been set 

in forward-moving packets (0 for UDP) 

32. BW_URG_FLAG The number of times the URG flag was set in 

packets that were travelling backward (0 for 

UDP) 

33. FW_HDR_LEN In the forward direction, total bytes used for headers 

34. BW_HDR_LEN In the forward direction, total bytes used for headers 



35. FW_PKT_S Number of packets forwarded per second 

36. BW_PKT_S Number of packets sent backwards per second 

37. PKT_LEN_MIN A flow is minimum length 

38. PKT_LEN_MAX A flow is maximum length 

39. PKT_LEN_AVG The average length of a flow 

40. PKT_LEN_STD The length of a flow's standard deviation 

41. PKT_LEN_VA Packet inter-arrival time must be kept to a minimum. 

42. FIN_CNT The total number of FIN packets 

43. SYN_CNT Packets with SYN (number of packets) 

44. RST_CNT The number of RST packets 

45. PST_CNT Number of packets with PUSH 

46. ACK_CNT The number of packets with an ACK 

47. URG_CNT The total number of URG packages 

48. CWE_CNT The number of packets containing CWE 

49. ECE_CNT The number of ECE packets 

50. DOWN_UP_RATIO The ratio of downloads to uploads 

51. PKT_SIZE_AVG Average size of packet 

52. FW_SEG_AVG Average packet size Average packet size in the forward 

direction 

53. BW_SEG_AVG Average packet size in the backward direction 

54. FW_BYT_BLK_AVG In the forward direction, the average number of 

bytes bulk rate 



55. FW_PKT_BLK_AVG In the forward direction, the average number of 

packets bulk rate 

56. FW_BLK_RATE_AVG In the forward direction, average number of bytes bulk 

rate 

57. BW_BYT_BLK_AVG Average number of bytes bulk rate in the backward 

direction 

58. BW_PKT_BLK_AVG In a backward direction, the average number of packets 

bulk rate 

59. BW_BLK_RATE_AVG In a backwards approach, the average number of bulk rate 

60. SUBFL_FW_PK In a forward direction sub flow, the average number of 

packets. 

61. SUBFL_FW_BYT In the forward direction, the average number of bytes in a 

sub flow 

62. SUBFL_BW_PKT In the backward direction, the average number of packets 

in a sub flow 

63. SUBFL_BW_BYT In the backward direction, the average number of bytes in 

a sub flow 

64. FW_WIN_BYT In the forward direction, the number of bytes sent in the 

initial window 

65. BW_WIN_BYT In the backward direction, the number of bytes sent in the 
initial window 

66. FW_ACT_PKT of packets in the forward direction with at least 1 byte of 

TCP data payload 

67. FW_SEG_MIN In the forward direction, the smallest segment size was 
recorded 

68. ATV_AVG Before being idle, a flow spent the majority of its time 

busy. 

69. ATV_STD The standard deviation of how long a flow was active 

before it became idle. 

70. ATV_MAX The longest a flow was operating before it became idle. 

71. ATV_MIN Before a flow became idle, it had to be active for at least a 

certain amount of time. 

72. IDL_AVG Before being active, a flow spent the majority of its time 

idle. 

73. IDL_STD The standard deviation of how long a flow was idle before 

it became active 

74. IDL_MAX The longest a flow could be idle before becoming active 

75. IDL_MIN Before a flow became active, it had to be idle for a certain 

amount of time 



2.1.2 Data Transformation 

The CIC-IDS 2018 dataset is a comprehensive dataset comprising various modern-day 

attacks. The 14 attack classes are present in the CIC IDS 2018 dataset. The 14 attack classes are 

reclassified into six classes based on the nature of the attack– Bot, Brute Force, DDoS, DoS, 

Infiltration, and Web attacks. The final dataset comprises benign samples and samples from the 

above six attack categories. 

 

 

 

 
Figure 2.2 Attacks with distribution 

 

The figure 4.2 illustrate the types of attacks with number of distributions that 

presented in the dataset. 

 

2.1.3 Processing Skewed Dataset 

In an intrusion detection dataset, only a small fraction of the dataset reflects attacks. This 

makes it challenging to create efficient models with high attack detection rates. A very biased 

prediction model is not practically useful because the prediction is extremely ill with the bulk class 

samples. 

CIC-IDS 2018 is a highly imbalanced ratio for various attack categories. The mitigation of 

the sophistication imbalance of giant Data poses an even greater problem because of the 

comparatively diverse and nuanced nature of an oversized dataset. Many approaches are proposed 

within the research literature to handle imbalanced data. 



2.1.3.1 Resampling Techniques 

The problem of an imbalanced dataset is difficult to handle. So resampling techniques have 

been created. Resampling techniques include oversampling, under-sampling, combining 

oversampling and under-sampling techniques, and ensemble sampling. These resample techniques 

are aimed at changing the ratios between the majority classes and minority classes. 

 

Under sampling 

Under-sampling is a technique for dealing with uneven datasets in which all of the data is kept 

in the minority class and the size of the majority class is reduced. This method can be used to retrieve 

more accurate data from datasets that were previously skewed. 

Oversampling 

The oversampling method includes introducing duplicate records to the dataset at random in 

minority classes. 

The following are some examples of oversampling techniques: 

 

• Borderline-SMOTE 

• SVM-based borderline oversampling 

• Synthetic Minority Oversampling Technique 

• Adaptive Synthetic Sampling (ADASYN) 

• Random Oversampling (SMOTE) 

• Synthetic Minority Oversampling Technique (SMOTE) 

 
In this project, The Synthetic Minority Oversampling Technique (SMOTE) from Oversampling 

is used to increase majority records in Web Attacks. 

a. Synthetic Minority Oversampling Technique (SMOTE) 

The most often used approach for synthesizing new records is the Synthetic Minority 

Oversampling Technique, or SMOTE. This technique was devised by Nitesh Chawla et al. in their 

2002 paper "SMOTE: Synthetic Minority Over-sampling Technique." SMOTE is one of the most 

commonly utilized oversampling algorithms to deal with an unbalanced dataset (synthetic minority 

oversampling technique). Its purpose is to re-create minority classes at random in order to balance 

the class distribution. 

A hybrid strategy combining SMOTE and Under Sampling is offered to address the issue of 

category imbalance. 



To overcome the skewness in the dataset, both SMOTE and under-sampling techniques have 

been explored. That some of the attack categories, like web attacks, are highly skewed. Web attack 

samples are oversampled using SMOTE. Web attack samples are increased to 14453 using SMOTE. 

As there are huge numbers of samples in normal traffic, and also some huge number of attacks can 

be under-sampled (i.e., 10 % of the original count). After applying under-sampling and SMOTE, the 

imbalance ratio is obtained. 

 

2.2 Feature Selection 

The performance of a machine learning model heavily depends upon the features selected for 

training the model. Excessive features may end up in the poor performance of the model. So, 

choosing the correct set of features is of paramount importance while building machine learning 

models. Selecting the proper features not only increases the efficiency of the model but also reduces 

the detection time. Intrusion detection datasets are generally high-dimensional datasets. For better 

efficiency, selecting the proper features in an IDS dataset is incredibly essential. 

These techniques are classified as under : 

• Filter methods 

• Wrapper methods 

• Embedded methods 

• Hybrid methods 

 

 
a) Embedded Methods 

These methods combine the benefits of both the wrapper and filter methods by incorporating 

feature interactions while retaining a low computational cost. Embedded approaches are iterative in 

that they look after each iteration of the model training process and thoroughly extract the 

characteristics that are most important to the training for that iteration. 

There are two widely used embedded approaches that are discussed. They are, 

 

• Regularization Method 

• Tree-based method 

 
In this project, a tree-based method has been implemented, which gives better results for datasets 

having many more features. 



Tree-Based Method 

One of the most appealing aspects of employing tree-based algorithms is that they are simple to 

understand. This also makes determining the importance of each variable in the tree-based approach's 

decision-making process simple. In other words, it is simple to calculate how much each variable 

contributes to that decision using this method. 

There must be two techniques to feature selection utilising tree-based models in this project 

 

• Random Forest 

• Gradient Boosting 

a) Random Forest 

The random forest instance defining the number of trees is selected first in the SelectFromModel 

technique. The SelectFromModel method from Scikit-learn is then used to select the features 

automatically. SelectFromModel picks characteristics whose value is greater than the sum of all 

features' importance. SelectFromModel alters the threshold value as an input. 

Calculate Feature Importance Random Forest 

The value of a characteristic can be calculated by each tree in the random forest based on its 

potential to boost the purity of the leaves. It's about Classification And Regression Trees (CART) and 

how they work. The greater the increase in leaf purity, the more important the trait becomes. This is 

done for each tree separately, then averaged across all trees, and then normalized to 1. So, the sum of 

the importance scores calculated by a Random Forest is 1. 

Figure 2.3 Feature Importance Representation 

 

The figure 2.3, represents the importance of features by using random forest feature selection. 



Table: 2.2.1 List of 37 selected features 

By implementing tree based random forest it selected top 37 features are selected among 80 

features which is listed below in Table: 2.2.1 

 

 
 

S.No. Selected Features Using Random Forest Feature Selection 

1. DST PORT 

2. FLOW DURATION 

3. TOT FWD PKTS 

4. TOT BWD PKTS 

5. TOTLEN FWD PKTS 

6. TOTLEN BWD PKTS 

7. FWD PKT LEN MAX 

8. FWD PKT LEN MEAN 

9. FWD PKT LEN STD 

10. BWD PKT LEN MEAN 

11. BWD PKT LEN STD 

12. FLOW PKTS/S 

13. FLOW IAT MEAN 

14. FLOW IAT MAX 

15. FLOW IAT MIN 

16. FWD IAT TOT 

17. FWD IAT MEAN 

18. FWD IAT MAX 

19. BWD IAT STD 



20. FWD HEADER LEN 

21. BWD HEADER LEN 

22. FWD PKTS/S 

23. BWD PKTS/S 

24. PKT LEN MAX 

25. PKT LEN STD 

26. PKT LEN VAR 

27. ECE FLAG CNT 

28. PKT SIZE AVG 

29. FWD SEG SIZE AVG 

30. BWD SEG SIZE AVG 

31. SUBFLOW FWD BYTS 

32. SUBFLOW BWD PKTS 

33. SUBFLOW BWD BYTS 

34. INIT FWD WIN BYTS 

35. INIT BWD WIN BYTS 

36. FWD ACT DATA PKTS 

37. FWD SEG SIZE MIN 



b) Gradient Boosting Feature Selection 

Gradient boosting uses a robust metric, called feature/importance, to retrieve the uncountable 

attribute in line with importance after the boosted tree is formed. This scoring model provides the 

importance of every feature in terms of constructing key decisions while constructing decision trees. 

Generally, feature importance provides a score that defines the assorted role of every attribute. This 

importance is computed by comparing and ranking all the features amongst each other within the dataset. 

The amount of every feature split point, weighted by the number of observations from that node, is 

used to calculate the relevance of a single decision tree. This split point is used to improve the algorithm's 

performance and efficiency. Purity (Gini Index) is used to determine the split points and to identify a more 

particular error function. Every tree's feature importance is averaged across all of the model's decision trees. 

The most important aspect of this method is to use Weighted Feature Importance to save training time by 

deleting unimportant features from the dataset. Once the most promising ones have been identified using 

the Gradient Boosting Feature Selection technique, they may be used to train and test the model efficiently. 

 

Table: 2.2.2 List of 13 selected features 

List of 13 selected features using Gradient Boosting Feature Selection technique which is 

displayed in tabular form in table 2.2.2 

S.No selected features using gradient boosting feature selection method 

1. DST PORT 

2. FWD PKT LEN MEAN 

3. FLOW BYTS/S 

4. BWD IAT MIN 

5. FWD HEADER LEN 

6. PKT LEN MAX 

7. PKT LEN STD 

 

 

8. RST FLAG CNT 



9. FWD SEG SIZE AVG 

10. BWD SEG SIZE AVG 

11. INIT FWD WIN BYTS 

12. INIT BWD WIN BYTS 

13. FWD SEG SIZE MIN 

 

 

 

CIC IDS2018 may be a high-dimensional dataset with 80 features. Several features are correlated and 

redundant. Training on the redundant data will increase the complexity and time and may lead to a flawed 

model. The proposed model used an embedded feature selection using Random Forest and Gradient 

Boosting. 

 

First, the features are selected using Random Forest feature selection. Feature importance using a 

Random Forest classifier is computed, which supports the average impurity of every feature in a very large 

tree within the forest. Using this method, the 37 most significant features are selected. After that, the 

remaining 13 topmost features from the dataset are selected using the gradient boosting method. 



2.3 Model Building 

 
Machine learning techniques could be defined as a science and art that enables programmed computers to 

learn from data provided to them. Computers are frequently trained on the data (training set) given to them 

during the machine learning model, and they can demonstrate their performance on a specific data set (test 

set). In this manner, the problem is resolved while minimizing human intervention. Machine learning is 

widely used in many situations where traditional methods are inefficient. The following areas of application 

will be listed: 

• It can interpret large amounts of complex data and solve complex problems that traditional 

methods cannot solve. 

• Machine Learning methods can provide better solutions in situations where existing solutions 

require too much external intervention/update without external intervention. 

• It can be done in a variety of settings. By examining the data, machine learning techniques 

are typically applied in the proposed situation. 

 
Supervised learning 

The machine learning model had been classified and labeled using this method. For instance, all 

flows in the dataset have data (labels/tags) concerning their nature (such as harmful or normal ). In 

the following stage, the test/prediction process, these tags are especially in comparison to the 

algorithm's results, and the algorithm's progress is calculated. The strategy's performance is excellent. 

However, supervised learning is valuable because it labels data using external services (e.g., manual 

tagging), and this process is repeated until the algorithm obtains a high level of 

accuracy/performance. 

 
Ensemble Methods 

Ensemble learning is an essence meta-machine learning approach that seeks to improve 

predictive performance by implementing predictions from various models. 

These techniques are classified into three types: 

 

• Bagging 

• Boosting 

• Stacking 



An effective intrusion detection system might also detect all types of attacks with a high attack 

detection rate. Various supervised machine learning techniques are proposed in the literature to 

achieve this. However, one algorithm is incapable of detecting all types of attacks effectively. During 

this study, the model is trained using multiple machine learning approaches, which are then combined 

using the proposed framework, which is based on the performance of each algorithm in classifying 

different attacks. Many algorithms are available in the literature, but seven of the most popular 

machine learning techniques are chosen for testing on the CIC- IDS2018 dataset for attack 

classification. 

 
Most points of the algorithms used here are given below: 

 

i. Bagging 

• Random Forest 

• Bagging Classifier 

• Decision Tree 

ii. Boosting 

• Adaptive Boosting Classifier 

• Extreme Gradient Boosting Classifier 

• Light Gradient Boosting Classifier 

• Histogram-based gradient boosting classifier 

 
2.3.1 Bagging 

Bagging algorithms are parallel ensemble methods that combine bootstrap and aggregation. 

Bagging is used to acquire a subset of features of data for training that may have a high density and 

normal points in the border that may have a low density using bootstrap sampling. An ensemble 

random tree may work well for anomaly detection with this recommendation, and a random tree is 

efficient for calculating the adversity of isolating data points. 

 
a) Random Forest 

For classification, Random Forest employs a slew of Decision Tree classifiers. An extremely RF 

tree is trained on a bootstrapped sample from the dataset. The split characteristic is chosen at random 

to divide the sample-supported impurity based on the Gini index/entropy. The results of all trees are 

then combined by voting on the last word prediction. Almost all of the time, even when no 

hyperparameters are used, the RF results outperform the DT algorithm. It is a popular algorithm that 

produces quick and accurate results. 



From the training set data, a random forest generates n decision trees. It randomly resamples the 

training data set for each tree during this process. As a result, n decision tree algorithms are obtained, 

and each differs from the other. Finally, it is done by selecting new estimates from n trees' estimates. 

The final value is determined by the worth with the highest rating. 

 
b) Decision Tree 

Decision trees are a common classifier used in machine learning techniques. The principles used 

in this approach are fairly understandable and straightforward. 

Each decision tree has two nodes, a root-node and a sub-node, as well as branches and leaves. 

There is a call statement within each node. In accordance with the outcome of this decision, the 

algorithm selects one of the two branches in the following step (the number of branches could even 

be over two in some sub-algorithms). This chosen branch directs the algorithm to the next node. This 

procedure concludes with the final element, the leaf. 

 
c) Bagging Classifier 

A bagging classifier is an ensemble learning method that integrates the outputs of many learners 

to improve performance. It fits base classifiers on random subsets of the original dataset and then 

aggregates their predictions (via voting or averaging) to form a final prediction. An ensemble meta 

estimator of this type can be used to reduce the variance of black-box test results (e.g., a decision 

tree). 

 
2.3.2 Boosting 

Boosting creates a strong classification model from a collection of base learners. Boosting 

works sequential manner by training a base learner's set and combining it for prediction. The boosting 

algorithm iteratively applies the base learning algorithms, with different distributions or weightings 

of training data on the base machine learning. 

 
a) Adaptive Boosting Classifier 

The adaptive advantage The algorithm is primarily interested in maintaining the weights and over 

training data. At each round, the weights of incorrectly classified examples are increased so that the 

base learner can focus on the most difficult examples in the training data. The revised classifier is 

determined by a majority vote of the bottom classified. 



Adaptive Boost is a variant of the Adaptive Boost algorithm that employs multiclass learners 

rather than binary classifiers. To reduce a pseudo-loss, AdaBoost employs the one-versus-one 

strategy. The one-versus-one strategy reduces a multitasking class to a binary class, where 

the purpose of each task is to label the occasions as belonging to the jth or kth class. Adaptive Boost 

mitigates the ranking loss. The superlative class includes the appropriate class. 

 
b) Extreme Gradient Boosting Classifier 

Extreme Gradient Boost is a tree-boosting method that makes the best use of available hardware 

and memory. It is nearly ten times faster than the most recent techniques. Extreme Gradient Boost 

can perform the three primary gradient boosting methods, namely Regularized Boosting, Gradient 

Boosting, and Stochastic Boosting. The Extreme Gradient Boost algorithm's main advantages are 

faster execution through parallel processing, portability, regularization, and tree pruning. 

Gradient boosting techniques are used in this algorithm. This algorithm makes predictions based 

on the integration of weighted input data. Depending on the data, there may be a number of 

parameters. Finding suitable variables from a set of data is critical to ensuring the algorithm's 

performance. The predictive performance is used to forecast the final result. 

 
c) Light Gradient Boosting Classifier 

 

In 2017, Microsoft created LightBGM as a boosting framework. The Gradient Boosted Tree 

(GBDT) algorithm has been improved in LightGBM. In terms of speed, performance, and power, this 

framework outperforms Xgboost. Unlike the other GBDT techniques, LightGBM remains effective 

when the data is too large and has several dimensions. 

 
This is because of two distinct strategies: a Special Feature Bundle (EFB) and Gradient-Based 

One-Side Sampling (GOSS). It is a tree-based method that supports categorical attributes, which 

eliminates the need for feature numerical transformation and normalization during the data 

preparation step. The tree-growth method based on leaves speeds up the matching process during 

decision-making. 

 
Machine Learning hyperparameter values are used for experimentation to evaluate the proposed 

approach. 



d) Histogram-based gradient boosting classifier 

 
Gradient Boosting ensembles are usually ineffective in terms of time. Binning the continuous 

variables whereas training the model can improve tree training. Histogram-Based Gradient Boosting 

is a Gradient Boosting ensemble that bins continuous values to speed up the model (HBGB). HBGB 

was inspired by Microsoft's Light Gradient Boosting machine. 



2.4 Evaluating Model Performance 

A machine learning model's evaluation is critical for validation or evaluation. A machine 

learning algorithm is evaluated using a variety of metrics. The most appropriate metrics must be 

chosen in order to fine-tune a model which is based on its performance. 

For evaluation, the following criteria are used: 

 

• Confusion Matrix 

• Accuracy 

• Precision 

• Recall 

• F1-score 

 

2.4.1 Confusion Matrix 

The counts of test records accurately and inaccurately predicted by the model are used to 

evaluate the performance of a classifier. The confusion matrix gives a comprehensive picture of a 

predictive model's performance, including which classes are correctly predicted and incorrectly, as 

well as the types of errors made. 

 

True Positive (TP): The cases in which one predicted yes and the actual output was also 

yes. 

True Negative (TN): The cases in which one predicted no and the actual output was no. 

False Positive (FP): The cases in which one predicted yes and the actual output was no. 

False Negative (FN): The cases in which one predicted no and the actual output was yes. 



Table 2.4 Prediction of Confusion Matrix 

ACTUAL 

  NEGATIVE POSITIVE 

P
R

E
D

IC
T

E
D

 NEGATIVE True Negative False Negative 

POSITIVE False Positive True Positive 

 
A confusion matrix is a table that shows how many true and false predictions a classifier made. It 

can be used to assess the performance of a classifier by computing performance metrics such as 

precision, recall, accuracy, and F1-score. 

 

2.4.2 Accuracy 

Accuracy is also defined as the ratio of correct positive cases to the number of cases under 

evaluation. The best accuracy value is 1 and the worst value is 0. 

Accuracy = (True positives +True negatives) / (Total number of data items) 

 

2.4.3 Precision 

Precision can all be defined about relation to either class. The precision of the negative class is 

innately the classifier's ability to not label a negative sample as positive. The precision of true 

positive is intuitively the classifier's ability to not label a positive sample as negative. Precision has 

the best value of 1 and the worst value of 0. 

Precision = (True positive) / (True Positive + False Positive) 

 

2.4.4 Recall(Sensitivity) 

Recall can be defined in terms of either of the classifications. The ratio of the True 

Positive(TP) to the number of actual positive cases is defined as the recall of the positive class. It 

can be expressed intuitively as the classifier's ability to capture all positive cases. It is also known as 

the True Positive Rate (TPR). 

Sensitivity = True Positive / (True Positive + False Negative) 



2.4.5 Recall(Specificity) 

Specificity is defined as the ratio of the True Negative(TN) to the number of actual false 

negatives when recalling a negative class. It can be expressed intuitively as the classifier's ability 

to capture all negative cases. It is also known as the True Negative Rate (TNR). 

Specificity = True Negative / (False Positive + True Negative) 

 
 

2.4.6 F1-score 

Regardless of class imbalance, the F1 score is regarded as one of the best performance 

measures for classification models. The F1 score is the weighted score of the class's recall and 

precision. It has the best value of 1 and the worst value of 0. 

F1-score = (2 * Precision * Recall) / (Precision + Recall) 

 
 

Accuracy is the best metric for evaluating the performance of the proposed ensemble methods. 

If the classification model is evaluated based on the attack detection accuracy, the performance of 

the model may suffer. A classifier with a high Recall rate but precision may classify one attack 

classification while misclassifying others, resulting in a decrease in an IDS's attack detection rate. 

As a result, the accuracy performance measure is used to select the best technique for each 

attack classification in order to improve overall accuracy and attack detection rate. Despite the fact 

that accuracy is the ideal measure for selecting the best machine learning technique for each class 

in the proposed technique, accuracy is used in the comparative results. 

The recall rate indicates the model's ability to reliably identify True Positives, whereas 

Accuracy is the ratio of classified instances predictions to total predictions. An IDS's primary goal 

is to accurately identify attacks and protect the network from intrusions. As a result, the accuracy 

rate is used to make comparisons of the findings. 



3. RESULTS AND DISCUSSION 

 
In this study, the dataset is trained on seven machine learning algorithms to find the best 

method to detect different attack categories. 

 

 
3.1 Data Collection 

 

CIC-IDS2018 (Canadian Institute for Cybersecurity (CIC) Intrusion Detection System 

2018(IDS) - includes seven different attack scenarios: Brute-force, Botnet, DoS, DDoS, Web 

attacks, and infiltration of the network from inside. 

 

 
Figure 3.1 Dataset 



3.2 Data Transformation 
 

3.2.1 Exploratory Data Analysis 
 

 

Figure 3.2 Attack distribution in the CIC IDS 2018 dataset 
 

 

Figure 3.3 Attack distribution in the CIC IDS 2018 dataset after re-classified 



3.3 Sampling Techniques 

 

Table .3.3.1 Imbalance ratio of the samples in the CIC IDS 2018 dataset 
 

 

Label No Of 

Samples 

% (Volume) Imbalanced Ratio 

Benign 5515108 82.98% Majority Class 

DDoS 775955 7.83% 10.5941019 

DoS 196568 4.05% 20.46497784 

Brute Force 94095 2.36% 35.15023245 

Bot 144535 1.77% 46.78775713 

Infiltration 140610 1.00% 83.35606546 

Web attacks 861 0.01% 14429.13254 

Total 6867732   

 

 

 

CIC-IDS2018 Before Sampling 
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Figure 3.4 Attack distribution of CIC IDS 2018 dataset 



Table : 3.3.2 Imbalance ratio of attack samples in the CIC IDS 2018 after sampling 
 

 

 

Label No Of Samples % (Volume) IMBALANCED 

RATIO 

Benign 100000 40.06% Majority Class 

DDoS 77595 31.08% 1.099925392 

DoS 19656 7.85% 2.124762341 

Brute Force 9409 3.77% 3.649448868 

Bot 14453 5.79% 4.857706916 

Infiltration 14061 5.63% 8.654386544 

Web attacks 14453 5.79% 4.857709619 

Total 249627   

 
 

CIC-IDS2018 After Sampling 
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Figure 3.5 Attack distribution of CIC IDS 2018 dataset after sampling. 



3.4 Feature Selection 
 

 

 

Figure 3.6 Before Feature Selection 

 
 

The above figure 3.6 illustrates the total features that presents in the dataset , Here there is total 80 

features are present which represents before feature selection. 



 

a) Random Forest Feature Selection 

 

 

Figure 3.7 After Feature Selection using random forest Feature Selection 

 
 

The above figure 3.7 refer to the importance of feature selection using the random forest. The figure 

which represents the CIC-IDS2018 dataset with 80 total features, In a figure which represents the 

37 topmost selected features by using random forest model . 

 
 

b) Gradient Boosting Feature Selection 
 

 

 

 

 

Figure : 3.8 After Feature Selection using Gradient Boosting Feature Selection 

 
 

The above figure 3.8 refer to the importance of feature selection using the random forest. The figure 

which represents the CIC-IDS2018 dataset with 80 total features, In a figure which represents the 

13 topmost selected features by using Gradient Boosting Feature Selection 



3.5 Model Building 

 
In this project, the dataset is trained on seven machine learning models to find the best 

method to detect different attack classifications. Based on the performance result of each machine 

learning model, a rank matrix was calculated. Based on the rank matrix, the results of the best- 

performing algorithm are considered for the final attack classification prediction. 

 
 

3.5.1 Comparison of model in attacks classification with random forest feature selection: 
 

 

 

 
Figure : 3.9 Bagging Classifier using random forest feature selection 

 

 

 

 

Figure : 3.10 Decision Tree using random forest feature selection 



 
 

 

Figure : 3.11 Random Forest using random forest feature selection 
 

 

 

 

 

 

Figure : 3.12 Adaptive Boosting Classifier using random forest feature selection 
 

 

 
Figure : 3.13 Extreme Gradient Boosting Classifier using random forest feature selection 



 
 
 

Figure : 3.14 Light Gradient Boosting Classifier using random forest feature selection 
 
 

 

 
Figure : 3.15 Histogram-based gradient boosting classifier using random forest feature 

selection 

 
The above figures represent Model Building with bagging and boosting methods by 

using Random Forest feature selection selected features. Based on the rank matrix, the results 

of the best-performing algorithm are considered for the final attack prediction. 

As given in the above figures, that a single model is not enough to detect all kinds of attack 

classifications. It is observed that some of the classifiers have a high Recall rate but a poor Precision 

rate. For example, the Bagging Classifier, Decision Tree, Random Forest, Extreme Gradient 

Boosting Classifier, Light Gradient Boosting Classifier, Histogram-based gradient boosting 

classifier performance results for detecting Botnet, Brute Force, DDoS, DoS attack show a high 

Recall rate of 100 % . Choosing these models as the best algorithm for detecting those attacks will 

increase the detection rate. 



For Infiltration attack ,Light Gradient Boosting Classifier model gives high precision rate 

with 83% but low recall rate as 31% Choosing Light Gradient Boosting as the best algorithm for 

detecting Infiltration will increase the precision detection rate for Infiltration but decrease the 

detection rate due to low recall rate. 

For Web attack, Bagging Classifier, Decision Tree, Random Forest, Extreme Gradient 

Boosting Classifier, Light Gradient Boosting Classifier, Histogram-based gradient boosting 

classifier gives high precision detection rate of 100% as well as same recall detection rate so 

choosing these models are best detection attack classification for web attack , whereas Adaptive 

Boosting Classifier model gives low precision detection rate with 26% but high recall rate of 

100%. 

 
3.5.2 Comparison of model in attacks classification with Gradient Boosting feature 

selection: 

 

 

Figure : 3.16 Bagging Classifier using Gradient Boosting feature selection 
 

 

 

 

Figure : 3.17 Decision Tree using Gradient Boosting feature selection 



 
 

 

Figure : 3.18 Random Forest using Gradient Boosting feature selection 
 

 
 

 

Figure : 3.19 Adaptive Boosting Classifier using Gradient Boosting feature selection 
 

 

 

 
Figure : 3.20 Extreme Gradient Boosting Classifier using Gradient Boosting feature 

selection 



 
 

 

Figure : 3.21 Light Gradient Boosting Classifier using Gradient Boosting feature selection 
 

 

 

 

Figure : 3.22 Histogram-based gradient boosting classifier using Gradient Boosting feature 

selection 

 

 
The above figures represent Model Building with bagging and boosting methods byusing 

Gradient Boosting feature selection selected features. Based on the rank matrix, the results of the 

best-performing algorithm are considered for the final attack prediction. 

For Bot attack Bagging Classifier, Random Forest, Light Gradient Boosting Classifier, 

Histogram-based gradient boosting classifier shows high precision and recall detection rate of 100 

% so these models are refer as best for bot attack. 

For Brute Force, DDoS, DoS attack , the models which gives high precision and recall 

detection rate with 100% in Bagging Classifier, Decision Tree Random Forest, Light Gradient 

Boosting Classifier, Histogram-based gradient boosting classifier. 

In Infiltration attack the high precision detection rate is 100% and recall decision rateis 0 in 

Random Forest model . So random forest model is best for detecting the infiltration attack. 



For Web Attacks the high precision detection rate is 100% and high recall rate is 97% 

in Light Gradient Boosting Classifier, Histogram-based gradient boosting classifier. So these 

are the best algorithms to detect the web attacks. 

 

3.6 Model Comparison 

 
To compute the results in machine learning model with accuracy score hence accuracy 

score give better performance among those seven machine learning model. 
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Figure : 3.23 Comparison Model Using Random Forest Feature Selection Accuracy 

Score 

 

From the above figure 3.23, By using random forest feature selection, the highest accuracy 

score is obtained in Decision tree, Light gradient Boosting , Histogram Gradient Boosting is 96%. 
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Figure 3.24 Comparison Model Using Gradient Boosting Feature Selection Accuracy 

Score 

 

 

From the above figure 3.24, By using Gradient Boosting feature selection, the highest 

accuracy score is obtained in Light gradient Boosting , Histogram Gradient Boosting is 96%. 
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4. Conclusion and Future Scope 

 
The study aimed to detect the abilities of multiple classifiers to improve attack detection 

accuracy. This paper proposes a machine learning model featuring a novel framework that brings 

together the advantages of several base classifiers for this, and different machine learning algorithms 

have been trained and tested on the latest CIC IDS 2018 dataset. By Using Random Forest Feature 

Selection -Decision Tree, LightGBM, and HBGB were finally used to detect multiple attacks with 

high attack detection rates and low prediction latency using the proposed framework. In Gradient 

Boosting Feature Selection LightGBM and HBGB were finally used to detect multiple attacks with 

high accuracy. 

The CIC IDS 2018 dataset is highly skewed, so the problem of class imbalance was addressed 

using a hybrid approach of under-sampling of majority class and oversampling some of the attack 

classes using the SMOTE technique. This dataset balancing was done for the training process. The 

proposed approach enhances the detection accuracy of many attack categories in Machine Learning 

approaches. Future work can explore unsupervised learning to train models on unlabeled datasets 

in the security domain. 

The training and test data in this study came from a series of CSV files comprising features 

extracted from the network flow. However, in real-world systems, this strategy is not feasible. 

However, by introducing a module that captures real network data and makes it workable with the 

deep learning algorithm, this problem can be solved. 
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