
AN ENSEMBLE FRAMEWORK FOR NETWORK INTRUSIONS

SUBMITTED BY

V. KANIMOZHI (20PCA004)

Project Report Submitted

In partial fulfillment of the requirements for the Award of

MASTER OF COMPUTER APPLICATIONS

Department of Computer Science

Avinashilingam Institute for Home Science and Higher Education for Women

Coimbatore – 641043

May – 2022

ABSTRACT

The amount of data that moves through a network at any particular time is referred to as network

traffic. Data traffic or just plain traffic are other terms for network traffic. The global network traffic

analysis market is predicted to increase at a compound yearly growth rate of 9.7% from 2021 to 2028,

reaching USD 5.69 billion by 2028, according to a report by Grand View Research. The COVID-19

pandemic outbreak and the accompanying lockdowns and limitations enforced in many parts of the

world have had a minor influence on network traffic analysis.

Aims: To propose an ensemble learning framework to detect the different attack types. This

project deals with the development of supervised machine learning algorithms to detect anomalies in

network traffic from the CIC-IDS2018 dataset. Method: The detection of anomalies in network

traffic using a supervised machine learning approach comprises five phases. Phase 1 is Data

Acquisition. In Phase 2 is the Data Preprocessing method, which transforms the dataset and resamples

the majority and minority of attacks on the dataset (CIC-IDS2018). In Phase 3, embedded-based

featureselection methods are used to select the important features. In Phase 4, we discuss the

supervised machine learning models developed with ensemble methods such as bagging (Random

Forest, Decision Tree, Bagging Classifier) and boosting (Adaptive Boosting, Extreme Gradient, Light

Gradient Boosting, Histogram-based gradient boosting) and then they are evaluated. The output of

different algorithms is evaluated in phase 5 with performance measures such as precision, recall, F1

Score, and accuracy score. It is observed that some models give better accuracy than others, and the

entire project is developed on the Python platform. Results: From this proposed system, the best

accuracy was obtained using the first method of Random Forest Feature Selection with the Bagging

method, the decision tree model was obtained with a 96% accuracy score. In the Boosting method,

the Light Gradient Boosting model and the Histogram-based gradient boosting model both have a

96% accuracy score. By using the second method of Gradient Boosting Feature Selection with the

Boosting method, the highest accuracy was obtained in the Light Gradient Boosting model and

Histogram-based gradient boosting model with 96% accuracy score. These are ensemble methods and

models that have better detection rates for multi-class attack classifications.

Keywords: Ensemble Learning, Intrusion Detection, Multi-class Classification, Machine

Learning, Network Traffic.

1. INTRODUCTION

1.1 About the Project

In anomaly-based Network Intrusion Detection Systems (NIDS), machine learning techniques

have been extensively used. Diverse machine learning algorithms, including bagging (Random Forest

Classifier, Decision Tree Classifier, Bagging Classifier) and boosting (AdaBoost Classifier, Extreme

Gradient Boosting Classifier, Light Gradient Boosting Classifier, Histogram-based gradient boosting

classifier), are used to detect intrusions.

However, single machine learning algorithms are no longer sufficient to meet the extensive

requirements of modern intrusion detection systems. Due to high traffic volume, IDS attacks have

diversified and are way more sophisticated. Some models can perform well on one type of attack but

perform poorly on other types of attacks. Hence, a machine learning model with multi-class

classification for identifying different attacks is the need of the hour.

An ensemble learning-assisted intrusion detection system is developed in this project. Ensemble

framework-based IDS mostly aims at one-class or a subset of class classification. The proposed IDS

has high performance at multi-class classification, for identifying different attack classes in a dataset.

The Canadian Institute for Cybersecurity Intrusion Detection System (CICIDS2018) dataset is used

in this project. It is a famous dataset with a larger number of features.

2. METHODOLOGY

A single machine learning classifier cannot be used to detect different attacks effectively. An

Ensemble approach is used to combine the results of different classifiers. In ensemble-based

methods, predictions are the results of the major of among the contributing models. In ensemble-

based methods, all classifiers in the ensemble contribute to the final output regardless of whether the

algorithm is capable of detecting the attack or not. Thus, to overcome the above drawback and

increase the attack detection rate for multi-attack classification, It is proposed to develop an ensemble

framework for attack detection. In this approach, several machine learning classifiers are ranked based

on their efficiency in detectingvarious attacks.

The following section elaborates on the workflow of building the machine learning model that

is used as a testbed. The machine learning model contained three major stages: preprocessing data,

sampling the majority and minority labels, and classifying target data. Thedetailed activities in each

stage are depicted in Figure 4.1

Figure 2.1 : Proposed Methodology

2.1 Data Collection

The process of Data collection is collecting datasets from the relevant sources it is used to

test and evaluate the proposed system, In this project CIC IDS2018 Dataset is used. It is provided by

Communications Security Establishment (CSE) and the Canadian Institute for Cybersecurity (CIC).

This dataset is generated for intrusion detection systems, mainly focusing on network-basedanomaly

detection. CSE-CIC-IDS2018 dataset is originally separated into 10 CSV files based on different

types of network attacks, including FTP-Brute Force, SSH-Brute Force, Brute Force -Web,Brute

Force -XSS, SQL Injection, Infiltration, Bot, DoS-Golden Eye, DoS-Slowloris, DoS-Slow HTTP

Test, DoS-Hulk, DDoS attacks-LOIC-HTTP, DDoS-LOIC-UDP, and DDOS attack-HOIC.

The attacking infrastructure includes 50 machines and the victim organization has 5

departments and includes 420 machines, 30 servers with 80 features and approximately sixteen

million rows are present in this dataset.

Pandas library provides functions to concatenate and import multiple .csv files into one data

frame.

This chapter first introduces common network attacks including brute-force attacks, botnet

attacks, web attacks, and infiltration attacks. All listed attacks are explained in terms of

characteristics and detection techniques. This chapter also discusses three feature selection methods:

filter method, wrapper method, and embedded method. The differences between the three kinds of

feature selection methods are explained.

Network Attacks

Network attacks are further classified into types presented as follows,

• Brute-Force

• Botnet

• Web Attacks

• Infiltration

• Denial-of-Service

• Distributed Denial-Of-Service

• Heartbleed Attack

a) Brute-Force

The brute-force attack has been used frequently within the network. However, it is not

difficult to detect this type of attack. The intrusion detection system could effectively detect the

exhaustive key search-based brute-force attack by setting the utmost number of login attempts.

The exhaustive key search attack requires the hackers to undertake all the potential combinations

of passwords within the key space until the correct key is found.

When the maximum number of login attempts is reached, the intrusion detection system will

detect the abnormal activity and raise the alarm. Therefore, the account would be locked to

prevent further attempts by hackers. However, the password-spray attack overcomes the

disadvantage of the exhaustive key search. It allows the hackers to repeatedly try the identical

password for various accounts to avoid being alerted by the utmost attempts policy that would be

activated by multiple unsuccessful login attempts on the identical account. However, the advance

of password-spray attacks makes it difficult to detect. There is another approach that was

introduced to detect brute force attacks.

b) Botnet

A common approach for detecting botnet attack is to investigate the network traffic. The

typical attributes of network traffic include the source and destination address, the protocols, the

related port numbers, the duration of the session, the amount of incoming and outgoing packets,

andthe cumulative size of the transmitted packets. The detector usually checks the IP addresses

of network traffic to determine if the IP addresses are identified as suspicious addresses with

abnormalactivities before.

The bots, the compromised computers, often use the particular protocol and associated port

toascertain the communication with one another or infect other target computers. For instance,

port 25 for SMTP, port 80 for HTTP, port 6667 for IRC, and port 53 for DNS. Counting the

packets transmitted within the network and their size shows the significant meaning for detecting

the communications between bots or between bot and target. It could indicate the weird behavior

of the botnet attack by showing the huge amount of information transmission within a

comparatively in need of time, multiple packets of identical size, and many more.

c) Web Attacks

The development of online applications makes the web more functional and productive. People

could access many software applications through the web and store the info online. The common

web applications that individuals may use daily are online office suites, online video streaming

platforms, webmail, e-commerce platform, etc.

But the sensitive data of users handled by these web applications could also be threatened by

the net attacks. Web attacks aim to interrupt the safety of web services by using the weakness of the

programs and hijacking the information traffic between the client and server.

There are two kinds of common web attacks,

• XSS attack

• SQL injection

XSS attack

An XSS attack is targeting to take advantage of the communication between the top users and

web applications through the malicious script. The XSS attack may be launched to get users’ cookie

information by injecting malicious scripts into the HTML content of an online page. When the user

accesses this website, the malicious script would be activated and steal the user’s cookie. The cookie

information may reveal users’ sensitive information, like username and password.

SQL injection

SQL injection allows the hackers to manage the SQL database that is connected to the net

application by injecting a SQL query through user input. The hackers discover the vulnerable user

input of an online page that directly uses user input in SQL queries. After changing the SQL code,

the hackers may retrieve, modify, or even delete the data within the database.

d) Infiltration

By observing the software released on the net, none of them is perfectly secure without any

vulnerability. However, the hackers may use the weaknesses of the software to interrupt the victims'

computers and launch attacks from within the interior network. The hackers may target various

software, including document viewers, application programs, program development tools, and many

more. The malware will infect users’ computers through the vulnerable software. Then the hackers

launch the port scanning attack to find other potential victims within the internal network.

The port scanning attacks identify the potential victims by sending packets to the hosts within

the network through every possible port. The status of the ports is going to be acknowledged by

checking the responses. They are either open or closed. The response packets also contain the target

information, for example, the IP address and protocol. Leaked information is also employed by

hackers to launch more network attacks.

Even though there are many types of port scanning attacks, they all attack similar targets. The

common features that are accustomed to detecting port scanning attacks contain protocols, port

numbers, IP addresses, and TCP flags. The port scanning attacks will be employed on transport layer

protocols including TCP, UDP, ICMP, and IP. They will be performed against a single port from

multiple IPs, and multiple ports will be scanned by one IP further. Since TCP connections are

established during the attack and different TCP flags are used for various types of port scanning

attacks, TCP flags become one of the special characteristics of the port scanning attack.

e) Denial-of-Service

Detection of Denial of Service This is often addressed in flow-based intrusion detection. Because

of their nature, these attacks can cause variations in traffic volume that are usually visible at flow scale.

There are several attack categories under denial-of-service attacks, which are,

• DoS-Slowloris

• DoS-Golden Eye

• DoS-Slow HTTP Test

• DoS-Hulk

DoS-Slowloris

Slowloris attacks are also referred to as Slow GET or Slow Header. This attack allows a single

machine to take down another machine's web server while using minimal bandwidth and causing

unassociated services and ports to fail. In this scenario, it uses a Slowloris Perl-based instrument to

request the offline server.

The HTTP get request is routed to the specified server. This request cannot be validly terminated

as it lacks the terminating character r\n\r\n (double line break). The server anticipates the next request,

which will include a destroying character. The server configuration limits this waiting. The server

terminates the TCP connection when the timer expires.

DoS-Golden Eye

GoldenEye is a DoS testing tool for HTTP/S Layer. Keep Alive (as well as Connection: keep-

alive) options, in conjunction with Cache-Control options, are used to keep the socket connection

smashing via caching until it consumes all obtainable sockets on the HTTP/S server. GoldenEye is a

capable and highly recommended technique to investigate malware-related issues. It can detect

malware's condition and sensitive quirks in advanced running and select the malware's likely targeted

settings. It can also switch its framework conditions online adaptively to promote testing.

GoldenEye can effectively determine the malware's intended environment by using a specific

conjectural implementation engine to observe malware practices in elective situations.

DoS-Slow HTTP Test

• Slow HTTP Test is really a highly customizable tool for simulating application-level-

level Denial of Service attacks (DoS attacks).

• Slowloris is one of the most common low-bandwidth application level Denial of

Service attacks.

• HTTP POST is slow.

• Slow Read attack (based on TCP persist timer exploit) by draining concurrent

connections pool. Apache Range Header attack by causing extremely high memory

and CPU usage on the server.

DoS-Hulk

• HULK is a Denial of Service (DoS) program that targets web servers by creating disguised and

unique traffic volumes.

• HULK traffic skips caching engines and goes straight to the server's direct pool of resources.

f) Distributed Denial-Of-Service

Distributed Denial of Service (DDoS), that targets at server within the volume of useless

traffic from distributed and coordinated attack sources, are a major threat to the stability of the

Internet.

Several types of Distributed Denial-Of-Service are,

• DDOS attack-HOIC

• DDoS attacks-LOIC-HTTP

• DDoS-LOIC-UDP

DDoS attack-HOIC

• The High Orbit Ion Cannon (HOIC) is a BASIC-based network training and denial-of-service

attack application that can simultaneously attack up to 256 URLs.

• Praetox Technologies' Low Orbit Ion Cannon will be replaced by it. In this example, the HOIC

framework is utilised to launch a DDoS attack from four different workstations.

g) Heartbleed Attack

One of the foremost famous tools to need the advantage of Heartbleed is Heart leech. It can

scan forsystems in danger of the bug, and might then be accustomed to exploiting them and

exfiltrating data.

Some important features:

• Conclusive/inconclusive verdicts on whether the target is vulnerable

• Automatic retrieval of personal keys with no additional steps

• Some limited IDS evasion

• IPv6 support

• Bulk/fast download of Heartbleed data into an oversized file for offline processing

usingmany threads

• Tor/Socks5n proxy support

• Extensive connection diagnostic information

• STARTTLS support

2.1.1 Dataset Description

Dataset description describes the features present in it, in 2.1 tabular column gives elaborate

explanation of features.

Table 4.1 Feature and Feature description of the CIC-IDS2018 dataset

S.No Feature Name Description

1. FL_DUR Duration of the flow

2. TOT_FW_PK Total number of packets sent in the forward direction

3. TOT_BW_PK Total packets in the reverse direction

4. TOT_L_FW_PKT Total packet size in the forward direction

5. FW_PKT_L_MAX Maximum packet size in the forward direction

6. FW_PKT_L_MIN Minimum packet size in the forward direction

7. FW_PKT_L_AVG Average packet size in the forward direction

8. FW_PKT_L_STD Packet size standard deviation in the forward direction

9. BW_PKT_L_MAX Maximum packet size in the reverse direction

10. BW_PKT_L_MIN Minimum packet size in the reverse direction

11. BW_PKT_L_AVG Mean packet size in the reverse direction

12. BW_PKT_L_STD Packet size standard deviation in the reverse direction

13. FL_BYT_S flow packets rate, which is the number of packets

transferred per second

14. FL_PKT_S flow byte rate, which is the number of packets

transferred per second

15. FL_IAT_AVG Time difference between two flows

16. FL_IAT_STD Time two standard deviation flows

17. FL_IAT_MAX The longest possible time between two flows

18. FL_IAT_MIN The shortest possible time between two flows

19. FW_IAT_TOT Total time elapsed between two packets sent

forward

20. FW_IAT_AVG The average time between two packets sent

forward

21. FW_IAT_STD Time difference between two packets sent in the

forward direction

22. FW_IAT_MAX The longest possible time between two packets sent in

the forward direction.

23. FW_IAT_MIN The shortest possible time between two packets sent in

the forward direction.

24. BW_IAT_TOT Total time elapsed between two packets sent in the

reverse direction

25. BW_IAT_AVG The average time between two packets sent in the

opposite direction.

26. BW_IAT_STD Time difference between two packets sent in the reverse

direction

27. BW_IAT_MAX Maximum time interval between two packets

sent in the reverse direction

28. BW_IAT_MIN The shortest possible time between two

packets sent in the reverse direction.

29. FW_PSH_FLAG The number of times the PSH flag was set in

packets travelling forward (0 for UDP)

30. BW_PSH_FLAG The number of times the PSH flag was set in

packets travelling backward (0 for UDP)

31. FW_URG_FLAG The number of times the URG flag has been set

in forward-moving packets (0 for UDP)

32. BW_URG_FLAG The number of times the URG flag was set in

packets that were travelling backward (0 for

UDP)

33. FW_HDR_LEN In the forward direction, total bytes used for headers

34. BW_HDR_LEN In the forward direction, total bytes used for headers

35. FW_PKT_S Number of packets forwarded per second

36. BW_PKT_S Number of packets sent backwards per second

37. PKT_LEN_MIN A flow is minimum length

38. PKT_LEN_MAX A flow is maximum length

39. PKT_LEN_AVG The average length of a flow

40. PKT_LEN_STD The length of a flow's standard deviation

41. PKT_LEN_VA Packet inter-arrival time must be kept to a minimum.

42. FIN_CNT The total number of FIN packets

43. SYN_CNT Packets with SYN (number of packets)

44. RST_CNT The number of RST packets

45. PST_CNT Number of packets with PUSH

46. ACK_CNT The number of packets with an ACK

47. URG_CNT The total number of URG packages

48. CWE_CNT The number of packets containing CWE

49. ECE_CNT The number of ECE packets

50. DOWN_UP_RATIO The ratio of downloads to uploads

51. PKT_SIZE_AVG Average size of packet

52. FW_SEG_AVG Average packet size Average packet size in the forward

direction

53. BW_SEG_AVG Average packet size in the backward direction

54. FW_BYT_BLK_AVG In the forward direction, the average number of

bytes bulk rate

55. FW_PKT_BLK_AVG In the forward direction, the average number of

packets bulk rate

56. FW_BLK_RATE_AVG In the forward direction, average number of bytes bulk

rate

57. BW_BYT_BLK_AVG Average number of bytes bulk rate in the backward

direction

58. BW_PKT_BLK_AVG In a backward direction, the average number of packets

bulk rate

59. BW_BLK_RATE_AVG In a backwards approach, the average number of bulk rate

60. SUBFL_FW_PK In a forward direction sub flow, the average number of

packets.

61. SUBFL_FW_BYT In the forward direction, the average number of bytes in a

sub flow

62. SUBFL_BW_PKT In the backward direction, the average number of packets

in a sub flow

63. SUBFL_BW_BYT In the backward direction, the average number of bytes in

a sub flow

64. FW_WIN_BYT In the forward direction, the number of bytes sent in the

initial window

65. BW_WIN_BYT In the backward direction, the number of bytes sent in the
initial window

66. FW_ACT_PKT of packets in the forward direction with at least 1 byte of

TCP data payload

67. FW_SEG_MIN In the forward direction, the smallest segment size was
recorded

68. ATV_AVG Before being idle, a flow spent the majority of its time

busy.

69. ATV_STD The standard deviation of how long a flow was active

before it became idle.

70. ATV_MAX The longest a flow was operating before it became idle.

71. ATV_MIN Before a flow became idle, it had to be active for at least a

certain amount of time.

72. IDL_AVG Before being active, a flow spent the majority of its time

idle.

73. IDL_STD The standard deviation of how long a flow was idle before

it became active

74. IDL_MAX The longest a flow could be idle before becoming active

75. IDL_MIN Before a flow became active, it had to be idle for a certain

amount of time

2.1.2 Data Transformation

The CIC-IDS 2018 dataset is a comprehensive dataset comprising various modern-day

attacks. The 14 attack classes are present in the CIC IDS 2018 dataset. The 14 attack classes are

reclassified into six classes based on the nature of the attack– Bot, Brute Force, DDoS, DoS,

Infiltration, and Web attacks. The final dataset comprises benign samples and samples from the

above six attack categories.

Figure 2.2 Attacks with distribution

The figure 4.2 illustrate the types of attacks with number of distributions that

presented in the dataset.

2.1.3 Processing Skewed Dataset

In an intrusion detection dataset, only a small fraction of the dataset reflects attacks. This

makes it challenging to create efficient models with high attack detection rates. A very biased

prediction model is not practically useful because the prediction is extremely ill with the bulk class

samples.

CIC-IDS 2018 is a highly imbalanced ratio for various attack categories. The mitigation of

the sophistication imbalance of giant Data poses an even greater problem because of the

comparatively diverse and nuanced nature of an oversized dataset. Many approaches are proposed

within the research literature to handle imbalanced data.

2.1.3.1 Resampling Techniques

The problem of an imbalanced dataset is difficult to handle. So resampling techniques have

been created. Resampling techniques include oversampling, under-sampling, combining

oversampling and under-sampling techniques, and ensemble sampling. These resample techniques

are aimed at changing the ratios between the majority classes and minority classes.

Under sampling

Under-sampling is a technique for dealing with uneven datasets in which all of the data is kept

in the minority class and the size of the majority class is reduced. This method can be used to retrieve

more accurate data from datasets that were previously skewed.

Oversampling

The oversampling method includes introducing duplicate records to the dataset at random in

minority classes.

The following are some examples of oversampling techniques:

• Borderline-SMOTE

• SVM-based borderline oversampling

• Synthetic Minority Oversampling Technique

• Adaptive Synthetic Sampling (ADASYN)

• Random Oversampling (SMOTE)

• Synthetic Minority Oversampling Technique (SMOTE)

In this project, The Synthetic Minority Oversampling Technique (SMOTE) from Oversampling

is used to increase majority records in Web Attacks.

a. Synthetic Minority Oversampling Technique (SMOTE)

The most often used approach for synthesizing new records is the Synthetic Minority

Oversampling Technique, or SMOTE. This technique was devised by Nitesh Chawla et al. in their

2002 paper "SMOTE: Synthetic Minority Over-sampling Technique." SMOTE is one of the most

commonly utilized oversampling algorithms to deal with an unbalanced dataset (synthetic minority

oversampling technique). Its purpose is to re-create minority classes at random in order to balance

the class distribution.

A hybrid strategy combining SMOTE and Under Sampling is offered to address the issue of

category imbalance.

To overcome the skewness in the dataset, both SMOTE and under-sampling techniques have

been explored. That some of the attack categories, like web attacks, are highly skewed. Web attack

samples are oversampled using SMOTE. Web attack samples are increased to 14453 using SMOTE.

As there are huge numbers of samples in normal traffic, and also some huge number of attacks can

be under-sampled (i.e., 10 % of the original count). After applying under-sampling and SMOTE, the

imbalance ratio is obtained.

2.2 Feature Selection

The performance of a machine learning model heavily depends upon the features selected for

training the model. Excessive features may end up in the poor performance of the model. So,

choosing the correct set of features is of paramount importance while building machine learning

models. Selecting the proper features not only increases the efficiency of the model but also reduces

the detection time. Intrusion detection datasets are generally high-dimensional datasets. For better

efficiency, selecting the proper features in an IDS dataset is incredibly essential.

These techniques are classified as under :

• Filter methods

• Wrapper methods

• Embedded methods

• Hybrid methods

a) Embedded Methods

These methods combine the benefits of both the wrapper and filter methods by incorporating

feature interactions while retaining a low computational cost. Embedded approaches are iterative in

that they look after each iteration of the model training process and thoroughly extract the

characteristics that are most important to the training for that iteration.

There are two widely used embedded approaches that are discussed. They are,

• Regularization Method

• Tree-based method

In this project, a tree-based method has been implemented, which gives better results for datasets

having many more features.

Tree-Based Method

One of the most appealing aspects of employing tree-based algorithms is that they are simple to

understand. This also makes determining the importance of each variable in the tree-based approach's

decision-making process simple. In other words, it is simple to calculate how much each variable

contributes to that decision using this method.

There must be two techniques to feature selection utilising tree-based models in this project

• Random Forest

• Gradient Boosting

a) Random Forest

The random forest instance defining the number of trees is selected first in the SelectFromModel

technique. The SelectFromModel method from Scikit-learn is then used to select the features

automatically. SelectFromModel picks characteristics whose value is greater than the sum of all

features' importance. SelectFromModel alters the threshold value as an input.

Calculate Feature Importance Random Forest

The value of a characteristic can be calculated by each tree in the random forest based on its

potential to boost the purity of the leaves. It's about Classification And Regression Trees (CART) and

how they work. The greater the increase in leaf purity, the more important the trait becomes. This is

done for each tree separately, then averaged across all trees, and then normalized to 1. So, the sum of

the importance scores calculated by a Random Forest is 1.

Figure 2.3 Feature Importance Representation

The figure 2.3, represents the importance of features by using random forest feature selection.

Table: 2.2.1 List of 37 selected features

By implementing tree based random forest it selected top 37 features are selected among 80

features which is listed below in Table: 2.2.1

S.No. Selected Features Using Random Forest Feature Selection

1. DST PORT

2. FLOW DURATION

3. TOT FWD PKTS

4. TOT BWD PKTS

5. TOTLEN FWD PKTS

6. TOTLEN BWD PKTS

7. FWD PKT LEN MAX

8. FWD PKT LEN MEAN

9. FWD PKT LEN STD

10. BWD PKT LEN MEAN

11. BWD PKT LEN STD

12. FLOW PKTS/S

13. FLOW IAT MEAN

14. FLOW IAT MAX

15. FLOW IAT MIN

16. FWD IAT TOT

17. FWD IAT MEAN

18. FWD IAT MAX

19. BWD IAT STD

20. FWD HEADER LEN

21. BWD HEADER LEN

22. FWD PKTS/S

23. BWD PKTS/S

24. PKT LEN MAX

25. PKT LEN STD

26. PKT LEN VAR

27. ECE FLAG CNT

28. PKT SIZE AVG

29. FWD SEG SIZE AVG

30. BWD SEG SIZE AVG

31. SUBFLOW FWD BYTS

32. SUBFLOW BWD PKTS

33. SUBFLOW BWD BYTS

34. INIT FWD WIN BYTS

35. INIT BWD WIN BYTS

36. FWD ACT DATA PKTS

37. FWD SEG SIZE MIN

b) Gradient Boosting Feature Selection

Gradient boosting uses a robust metric, called feature/importance, to retrieve the uncountable

attribute in line with importance after the boosted tree is formed. This scoring model provides the

importance of every feature in terms of constructing key decisions while constructing decision trees.

Generally, feature importance provides a score that defines the assorted role of every attribute. This

importance is computed by comparing and ranking all the features amongst each other within the dataset.

The amount of every feature split point, weighted by the number of observations from that node, is

used to calculate the relevance of a single decision tree. This split point is used to improve the algorithm's

performance and efficiency. Purity (Gini Index) is used to determine the split points and to identify a more

particular error function. Every tree's feature importance is averaged across all of the model's decision trees.

The most important aspect of this method is to use Weighted Feature Importance to save training time by

deleting unimportant features from the dataset. Once the most promising ones have been identified using

the Gradient Boosting Feature Selection technique, they may be used to train and test the model efficiently.

Table: 2.2.2 List of 13 selected features

List of 13 selected features using Gradient Boosting Feature Selection technique which is

displayed in tabular form in table 2.2.2

S.No selected features using gradient boosting feature selection method

1. DST PORT

2. FWD PKT LEN MEAN

3. FLOW BYTS/S

4. BWD IAT MIN

5. FWD HEADER LEN

6. PKT LEN MAX

7. PKT LEN STD

8. RST FLAG CNT

9. FWD SEG SIZE AVG

10. BWD SEG SIZE AVG

11. INIT FWD WIN BYTS

12. INIT BWD WIN BYTS

13. FWD SEG SIZE MIN

CIC IDS2018 may be a high-dimensional dataset with 80 features. Several features are correlated and

redundant. Training on the redundant data will increase the complexity and time and may lead to a flawed

model. The proposed model used an embedded feature selection using Random Forest and Gradient

Boosting.

First, the features are selected using Random Forest feature selection. Feature importance using a

Random Forest classifier is computed, which supports the average impurity of every feature in a very large

tree within the forest. Using this method, the 37 most significant features are selected. After that, the

remaining 13 topmost features from the dataset are selected using the gradient boosting method.

2.3 Model Building

Machine learning techniques could be defined as a science and art that enables programmed computers to

learn from data provided to them. Computers are frequently trained on the data (training set) given to them

during the machine learning model, and they can demonstrate their performance on a specific data set (test

set). In this manner, the problem is resolved while minimizing human intervention. Machine learning is

widely used in many situations where traditional methods are inefficient. The following areas of application

will be listed:

• It can interpret large amounts of complex data and solve complex problems that traditional

methods cannot solve.

• Machine Learning methods can provide better solutions in situations where existing solutions

require too much external intervention/update without external intervention.

• It can be done in a variety of settings. By examining the data, machine learning techniques

are typically applied in the proposed situation.

Supervised learning

The machine learning model had been classified and labeled using this method. For instance, all

flows in the dataset have data (labels/tags) concerning their nature (such as harmful or normal). In

the following stage, the test/prediction process, these tags are especially in comparison to the

algorithm's results, and the algorithm's progress is calculated. The strategy's performance is excellent.

However, supervised learning is valuable because it labels data using external services (e.g., manual

tagging), and this process is repeated until the algorithm obtains a high level of

accuracy/performance.

Ensemble Methods

Ensemble learning is an essence meta-machine learning approach that seeks to improve

predictive performance by implementing predictions from various models.

These techniques are classified into three types:

• Bagging

• Boosting

• Stacking

An effective intrusion detection system might also detect all types of attacks with a high attack

detection rate. Various supervised machine learning techniques are proposed in the literature to

achieve this. However, one algorithm is incapable of detecting all types of attacks effectively. During

this study, the model is trained using multiple machine learning approaches, which are then combined

using the proposed framework, which is based on the performance of each algorithm in classifying

different attacks. Many algorithms are available in the literature, but seven of the most popular

machine learning techniques are chosen for testing on the CIC- IDS2018 dataset for attack

classification.

Most points of the algorithms used here are given below:

i. Bagging

• Random Forest

• Bagging Classifier

• Decision Tree

ii. Boosting

• Adaptive Boosting Classifier

• Extreme Gradient Boosting Classifier

• Light Gradient Boosting Classifier

• Histogram-based gradient boosting classifier

2.3.1 Bagging

Bagging algorithms are parallel ensemble methods that combine bootstrap and aggregation.

Bagging is used to acquire a subset of features of data for training that may have a high density and

normal points in the border that may have a low density using bootstrap sampling. An ensemble

random tree may work well for anomaly detection with this recommendation, and a random tree is

efficient for calculating the adversity of isolating data points.

a) Random Forest

For classification, Random Forest employs a slew of Decision Tree classifiers. An extremely RF

tree is trained on a bootstrapped sample from the dataset. The split characteristic is chosen at random

to divide the sample-supported impurity based on the Gini index/entropy. The results of all trees are

then combined by voting on the last word prediction. Almost all of the time, even when no

hyperparameters are used, the RF results outperform the DT algorithm. It is a popular algorithm that

produces quick and accurate results.

From the training set data, a random forest generates n decision trees. It randomly resamples the

training data set for each tree during this process. As a result, n decision tree algorithms are obtained,

and each differs from the other. Finally, it is done by selecting new estimates from n trees' estimates.

The final value is determined by the worth with the highest rating.

b) Decision Tree

Decision trees are a common classifier used in machine learning techniques. The principles used

in this approach are fairly understandable and straightforward.

Each decision tree has two nodes, a root-node and a sub-node, as well as branches and leaves.

There is a call statement within each node. In accordance with the outcome of this decision, the

algorithm selects one of the two branches in the following step (the number of branches could even

be over two in some sub-algorithms). This chosen branch directs the algorithm to the next node. This

procedure concludes with the final element, the leaf.

c) Bagging Classifier

A bagging classifier is an ensemble learning method that integrates the outputs of many learners

to improve performance. It fits base classifiers on random subsets of the original dataset and then

aggregates their predictions (via voting or averaging) to form a final prediction. An ensemble meta

estimator of this type can be used to reduce the variance of black-box test results (e.g., a decision

tree).

2.3.2 Boosting

Boosting creates a strong classification model from a collection of base learners. Boosting

works sequential manner by training a base learner's set and combining it for prediction. The boosting

algorithm iteratively applies the base learning algorithms, with different distributions or weightings

of training data on the base machine learning.

a) Adaptive Boosting Classifier

The adaptive advantage The algorithm is primarily interested in maintaining the weights and over

training data. At each round, the weights of incorrectly classified examples are increased so that the

base learner can focus on the most difficult examples in the training data. The revised classifier is

determined by a majority vote of the bottom classified.

Adaptive Boost is a variant of the Adaptive Boost algorithm that employs multiclass learners

rather than binary classifiers. To reduce a pseudo-loss, AdaBoost employs the one-versus-one

strategy. The one-versus-one strategy reduces a multitasking class to a binary class, where

the purpose of each task is to label the occasions as belonging to the jth or kth class. Adaptive Boost

mitigates the ranking loss. The superlative class includes the appropriate class.

b) Extreme Gradient Boosting Classifier

Extreme Gradient Boost is a tree-boosting method that makes the best use of available hardware

and memory. It is nearly ten times faster than the most recent techniques. Extreme Gradient Boost

can perform the three primary gradient boosting methods, namely Regularized Boosting, Gradient

Boosting, and Stochastic Boosting. The Extreme Gradient Boost algorithm's main advantages are

faster execution through parallel processing, portability, regularization, and tree pruning.

Gradient boosting techniques are used in this algorithm. This algorithm makes predictions based

on the integration of weighted input data. Depending on the data, there may be a number of

parameters. Finding suitable variables from a set of data is critical to ensuring the algorithm's

performance. The predictive performance is used to forecast the final result.

c) Light Gradient Boosting Classifier

In 2017, Microsoft created LightBGM as a boosting framework. The Gradient Boosted Tree

(GBDT) algorithm has been improved in LightGBM. In terms of speed, performance, and power, this

framework outperforms Xgboost. Unlike the other GBDT techniques, LightGBM remains effective

when the data is too large and has several dimensions.

This is because of two distinct strategies: a Special Feature Bundle (EFB) and Gradient-Based

One-Side Sampling (GOSS). It is a tree-based method that supports categorical attributes, which

eliminates the need for feature numerical transformation and normalization during the data

preparation step. The tree-growth method based on leaves speeds up the matching process during

decision-making.

Machine Learning hyperparameter values are used for experimentation to evaluate the proposed

approach.

d) Histogram-based gradient boosting classifier

Gradient Boosting ensembles are usually ineffective in terms of time. Binning the continuous

variables whereas training the model can improve tree training. Histogram-Based Gradient Boosting

is a Gradient Boosting ensemble that bins continuous values to speed up the model (HBGB). HBGB

was inspired by Microsoft's Light Gradient Boosting machine.

2.4 Evaluating Model Performance

A machine learning model's evaluation is critical for validation or evaluation. A machine

learning algorithm is evaluated using a variety of metrics. The most appropriate metrics must be

chosen in order to fine-tune a model which is based on its performance.

For evaluation, the following criteria are used:

• Confusion Matrix

• Accuracy

• Precision

• Recall

• F1-score

2.4.1 Confusion Matrix

The counts of test records accurately and inaccurately predicted by the model are used to

evaluate the performance of a classifier. The confusion matrix gives a comprehensive picture of a

predictive model's performance, including which classes are correctly predicted and incorrectly, as

well as the types of errors made.

True Positive (TP): The cases in which one predicted yes and the actual output was also

yes.

True Negative (TN): The cases in which one predicted no and the actual output was no.

False Positive (FP): The cases in which one predicted yes and the actual output was no.

False Negative (FN): The cases in which one predicted no and the actual output was yes.

Table 2.4 Prediction of Confusion Matrix

ACTUAL

 NEGATIVE POSITIVE

P
R

E
D

IC
T

E
D

 NEGATIVE True Negative False Negative

POSITIVE False Positive True Positive

A confusion matrix is a table that shows how many true and false predictions a classifier made. It

can be used to assess the performance of a classifier by computing performance metrics such as

precision, recall, accuracy, and F1-score.

2.4.2 Accuracy

Accuracy is also defined as the ratio of correct positive cases to the number of cases under

evaluation. The best accuracy value is 1 and the worst value is 0.

Accuracy = (True positives +True negatives) / (Total number of data items)

2.4.3 Precision

Precision can all be defined about relation to either class. The precision of the negative class is

innately the classifier's ability to not label a negative sample as positive. The precision of true

positive is intuitively the classifier's ability to not label a positive sample as negative. Precision has

the best value of 1 and the worst value of 0.

Precision = (True positive) / (True Positive + False Positive)

2.4.4 Recall(Sensitivity)

Recall can be defined in terms of either of the classifications. The ratio of the True

Positive(TP) to the number of actual positive cases is defined as the recall of the positive class. It

can be expressed intuitively as the classifier's ability to capture all positive cases. It is also known as

the True Positive Rate (TPR).

Sensitivity = True Positive / (True Positive + False Negative)

2.4.5 Recall(Specificity)

Specificity is defined as the ratio of the True Negative(TN) to the number of actual false

negatives when recalling a negative class. It can be expressed intuitively as the classifier's ability

to capture all negative cases. It is also known as the True Negative Rate (TNR).

Specificity = True Negative / (False Positive + True Negative)

2.4.6 F1-score

Regardless of class imbalance, the F1 score is regarded as one of the best performance

measures for classification models. The F1 score is the weighted score of the class's recall and

precision. It has the best value of 1 and the worst value of 0.

F1-score = (2 * Precision * Recall) / (Precision + Recall)

Accuracy is the best metric for evaluating the performance of the proposed ensemble methods.

If the classification model is evaluated based on the attack detection accuracy, the performance of

the model may suffer. A classifier with a high Recall rate but precision may classify one attack

classification while misclassifying others, resulting in a decrease in an IDS's attack detection rate.

As a result, the accuracy performance measure is used to select the best technique for each

attack classification in order to improve overall accuracy and attack detection rate. Despite the fact

that accuracy is the ideal measure for selecting the best machine learning technique for each class

in the proposed technique, accuracy is used in the comparative results.

The recall rate indicates the model's ability to reliably identify True Positives, whereas

Accuracy is the ratio of classified instances predictions to total predictions. An IDS's primary goal

is to accurately identify attacks and protect the network from intrusions. As a result, the accuracy

rate is used to make comparisons of the findings.

3. RESULTS AND DISCUSSION

In this study, the dataset is trained on seven machine learning algorithms to find the best

method to detect different attack categories.

3.1 Data Collection

CIC-IDS2018 (Canadian Institute for Cybersecurity (CIC) Intrusion Detection System

2018(IDS) - includes seven different attack scenarios: Brute-force, Botnet, DoS, DDoS, Web

attacks, and infiltration of the network from inside.

Figure 3.1 Dataset

3.2 Data Transformation

3.2.1 Exploratory Data Analysis

Figure 3.2 Attack distribution in the CIC IDS 2018 dataset

Figure 3.3 Attack distribution in the CIC IDS 2018 dataset after re-classified

3.3 Sampling Techniques

Table .3.3.1 Imbalance ratio of the samples in the CIC IDS 2018 dataset

Label No Of

Samples

% (Volume) Imbalanced Ratio

Benign 5515108 82.98% Majority Class

DDoS 775955 7.83% 10.5941019

DoS 196568 4.05% 20.46497784

Brute Force 94095 2.36% 35.15023245

Bot 144535 1.77% 46.78775713

Infiltration 140610 1.00% 83.35606546

Web attacks 861 0.01% 14429.13254

Total 6867732

CIC-IDS2018 Before Sampling

Infiltration, 5.63% Web

attacks,

5.79%

BruteForce, 3.77%

Bot,

5.79%

DoS, 7.85%

DDos, 31.08%

Benign, 40.06%

Figure 3.4 Attack distribution of CIC IDS 2018 dataset

Table : 3.3.2 Imbalance ratio of attack samples in the CIC IDS 2018 after sampling

Label No Of Samples % (Volume) IMBALANCED

RATIO

Benign 100000 40.06% Majority Class

DDoS 77595 31.08% 1.099925392

DoS 19656 7.85% 2.124762341

Brute Force 9409 3.77% 3.649448868

Bot 14453 5.79% 4.857706916

Infiltration 14061 5.63% 8.654386544

Web attacks 14453 5.79% 4.857709619

Total 249627

CIC-IDS2018 After Sampling

Web attacks, 5.79%

Infiltration, 5.63%

BruteForce, 3.77%

Bot,

5.79%

DoS, 7.85%

DDos, 31.08%

Benign, 40.06%

Figure 3.5 Attack distribution of CIC IDS 2018 dataset after sampling.

3.4 Feature Selection

Figure 3.6 Before Feature Selection

The above figure 3.6 illustrates the total features that presents in the dataset , Here there is total 80

features are present which represents before feature selection.

a) Random Forest Feature Selection

Figure 3.7 After Feature Selection using random forest Feature Selection

The above figure 3.7 refer to the importance of feature selection using the random forest. The figure

which represents the CIC-IDS2018 dataset with 80 total features, In a figure which represents the

37 topmost selected features by using random forest model .

b) Gradient Boosting Feature Selection

Figure : 3.8 After Feature Selection using Gradient Boosting Feature Selection

The above figure 3.8 refer to the importance of feature selection using the random forest. The figure

which represents the CIC-IDS2018 dataset with 80 total features, In a figure which represents the

13 topmost selected features by using Gradient Boosting Feature Selection

3.5 Model Building

In this project, the dataset is trained on seven machine learning models to find the best

method to detect different attack classifications. Based on the performance result of each machine

learning model, a rank matrix was calculated. Based on the rank matrix, the results of the best-

performing algorithm are considered for the final attack classification prediction.

3.5.1 Comparison of model in attacks classification with random forest feature selection:

Figure : 3.9 Bagging Classifier using random forest feature selection

Figure : 3.10 Decision Tree using random forest feature selection

Figure : 3.11 Random Forest using random forest feature selection

Figure : 3.12 Adaptive Boosting Classifier using random forest feature selection

Figure : 3.13 Extreme Gradient Boosting Classifier using random forest feature selection

Figure : 3.14 Light Gradient Boosting Classifier using random forest feature selection

Figure : 3.15 Histogram-based gradient boosting classifier using random forest feature

selection

The above figures represent Model Building with bagging and boosting methods by

using Random Forest feature selection selected features. Based on the rank matrix, the results

of the best-performing algorithm are considered for the final attack prediction.

As given in the above figures, that a single model is not enough to detect all kinds of attack

classifications. It is observed that some of the classifiers have a high Recall rate but a poor Precision

rate. For example, the Bagging Classifier, Decision Tree, Random Forest, Extreme Gradient

Boosting Classifier, Light Gradient Boosting Classifier, Histogram-based gradient boosting

classifier performance results for detecting Botnet, Brute Force, DDoS, DoS attack show a high

Recall rate of 100 % . Choosing these models as the best algorithm for detecting those attacks will

increase the detection rate.

For Infiltration attack ,Light Gradient Boosting Classifier model gives high precision rate

with 83% but low recall rate as 31% Choosing Light Gradient Boosting as the best algorithm for

detecting Infiltration will increase the precision detection rate for Infiltration but decrease the

detection rate due to low recall rate.

For Web attack, Bagging Classifier, Decision Tree, Random Forest, Extreme Gradient

Boosting Classifier, Light Gradient Boosting Classifier, Histogram-based gradient boosting

classifier gives high precision detection rate of 100% as well as same recall detection rate so

choosing these models are best detection attack classification for web attack , whereas Adaptive

Boosting Classifier model gives low precision detection rate with 26% but high recall rate of

100%.

3.5.2 Comparison of model in attacks classification with Gradient Boosting feature

selection:

Figure : 3.16 Bagging Classifier using Gradient Boosting feature selection

Figure : 3.17 Decision Tree using Gradient Boosting feature selection

Figure : 3.18 Random Forest using Gradient Boosting feature selection

Figure : 3.19 Adaptive Boosting Classifier using Gradient Boosting feature selection

Figure : 3.20 Extreme Gradient Boosting Classifier using Gradient Boosting feature

selection

Figure : 3.21 Light Gradient Boosting Classifier using Gradient Boosting feature selection

Figure : 3.22 Histogram-based gradient boosting classifier using Gradient Boosting feature

selection

The above figures represent Model Building with bagging and boosting methods byusing

Gradient Boosting feature selection selected features. Based on the rank matrix, the results of the

best-performing algorithm are considered for the final attack prediction.

For Bot attack Bagging Classifier, Random Forest, Light Gradient Boosting Classifier,

Histogram-based gradient boosting classifier shows high precision and recall detection rate of 100

% so these models are refer as best for bot attack.

For Brute Force, DDoS, DoS attack , the models which gives high precision and recall

detection rate with 100% in Bagging Classifier, Decision Tree Random Forest, Light Gradient

Boosting Classifier, Histogram-based gradient boosting classifier.

In Infiltration attack the high precision detection rate is 100% and recall decision rateis 0 in

Random Forest model . So random forest model is best for detecting the infiltration attack.

For Web Attacks the high precision detection rate is 100% and high recall rate is 97%

in Light Gradient Boosting Classifier, Histogram-based gradient boosting classifier. So these

are the best algorithms to detect the web attacks.

3.6 Model Comparison

To compute the results in machine learning model with accuracy score hence accuracy

score give better performance among those seven machine learning model.

Machine Learning Model Comparison

 120%

100% 96%
92% 95%

90% 92%
96% 96%

80%

60%

40%

20%

DecisionTr

eeClassifier

RandomFo

restClassifi

er

BaggingCla

ssifier

AdaBoostC

lassifier

XGBClassif

ier

LGBMClas

sifier

HistGradie

ntBoosting

Classifier

 Accuracy 96% 92% 95% 90% 92% 96% 96%

Figure : 3.23 Comparison Model Using Random Forest Feature Selection Accuracy

Score

From the above figure 3.23, By using random forest feature selection, the highest accuracy

score is obtained in Decision tree, Light gradient Boosting , Histogram Gradient Boosting is 96%.

120%

100%

80%

60%

40%

20%

0%

Figure 3.24 Comparison Model Using Gradient Boosting Feature Selection Accuracy

Score

From the above figure 3.24, By using Gradient Boosting feature selection, the highest

accuracy score is obtained in Light gradient Boosting , Histogram Gradient Boosting is 96%.

95%
92%

95% 96% 96%

86%

46%

4. Conclusion and Future Scope

The study aimed to detect the abilities of multiple classifiers to improve attack detection

accuracy. This paper proposes a machine learning model featuring a novel framework that brings

together the advantages of several base classifiers for this, and different machine learning algorithms

have been trained and tested on the latest CIC IDS 2018 dataset. By Using Random Forest Feature

Selection -Decision Tree, LightGBM, and HBGB were finally used to detect multiple attacks with

high attack detection rates and low prediction latency using the proposed framework. In Gradient

Boosting Feature Selection LightGBM and HBGB were finally used to detect multiple attacks with

high accuracy.

The CIC IDS 2018 dataset is highly skewed, so the problem of class imbalance was addressed

using a hybrid approach of under-sampling of majority class and oversampling some of the attack

classes using the SMOTE technique. This dataset balancing was done for the training process. The

proposed approach enhances the detection accuracy of many attack categories in Machine Learning

approaches. Future work can explore unsupervised learning to train models on unlabeled datasets

in the security domain.

The training and test data in this study came from a series of CSV files comprising features

extracted from the network flow. However, in real-world systems, this strategy is not feasible.

However, by introducing a module that captures real network data and makes it workable with the

deep learning algorithm, this problem can be solved.

5. References

1. S. Seth, K. K. Chahal and G. Singh, "A Novel Ensemble Framework for an Intelligent

Intrusion Detection System," in IEEE Access, vol. 9, pp. 138451-138467, 2021, doi:

10.1109/ACCESS.2021.3116219.

2. T. N. Rincy and R. Gupta, "Ensemble Learning Techniques and its Efficiency in

Machine Learning: A Survey," 2nd International Conference on Data, Engineering and

Applications (IDEA), 2020, pp. 1-6, doi: 10.1109/IDEA49133.2020.9170675.

3. D. Upadhyay, J. Manero, M. Zaman and S. Sampalli, "Gradient Boosting Feature

Selection With Machine Learning Classifiers for Intrusion Detection on Power Grids,"

in IEEE Transactions on Network and Service Management, vol. 18, no. 1, pp. 1104-

1116, March 2021, doi: 10.1109/TNSM.2020.3032618.

4. Towards Enhancement of Machine Learning Techniques Using CSE-CIC-IDS2018

Cybersecurity Dataset Ravikumar, Dharshini. Rochester Institute of Technology

ProQuest Dissertations Publishing, 2021. 28321989.

5. S. Ho, S. A. Jufout, K. Dajani and M. Mozumdar, "A Novel Intrusion Detection Model

for Detecting Known and Innovative Cyberattacks Using Convolutional Neural

Network," in IEEE Open Journal of the Computer Society, vol. 2, pp. 14-25, 2021, doi:

10.1109/OJCS.2021.3050917.

6. N. F. Haq, A. R. Onik and F. M. Shah, "An ensemble framework of anomaly detection

using hybridized feature selection approach (HFSA)," 2015 SAI Intelligent Systems

Conference (IntelliSys), 2015, pp. 989-995, doi: 10.1109/IntelliSys.2015.7361264.

7. HCRNNIDS: Hybrid Convolutional Recurrent Neural Network-Based Network Intrusion

Detection System by Muhammad Ashfaq Khan IoT and Big-Data Research Center,

Department of Electronics Engineering, Incheon National University, Incheon 2012, Korea

Academic Editor: Chien-Chih Wang

8. Q. R. S. Fitni and K. Ramli, "Implementation of Ensemble Learning and Feature

Selection for Performance Improvements in Anomaly-Based Intrusion Detection

Systems," 2020 IEEE International Conference on Industry 4.0, Artificial Intelligence,

and Communications Technology (IAICT), 2020, pp. 118-124, doi:

10.1109/IAICT50021.2020.9172014.

9. W. Seo and W. Pak, "Real-Time Network Intrusion Prevention System Based on

Hybrid Machine Learning," in IEEE Access, vol. 9, pp. 46386-46397, 2021, doi:

10.1109/ACCESS.2021.3066620.

10. P. Chuang and S. Li, "Network Intrusion Detection using Hybrid Machine

Learning," 2019 International Conference on Fuzzy Theory and Its Applications

(iFUZZY), 2019, pp. 1-5, doi: 10.1109/iFUZZY46984.2019.9066223.

https://sciprofiles.com/profile/439617

