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INTRODUCTION 

Even ordinary people are now bare to software. Millions of individuals around the sphere use 

smart devices. Everything is software-based. As per the NIST study, the quantity of IT 

weaknesses has been expanding throughout the course of recent years. Vulnerabilities allow an 

attacker to execute code or gain access to the memory of a target machine.This project's 

purpose is to investigate common vulnerabilities and exposures (CVEs).While there are other 

vulnerability databases, we'll concentrate on the National Vulnerability Database because it's 

the most widely utilised (NVD). It is the industry standard database perfectly capture all 

vulnerabilities revealed publicly.  

This analysis emphasizes the extent and tries to impose the vulnerability, and how severe each 

type is by analyzing it. Data analysis and PCA (Principal Component Analysis) which is a 

dimensionality reduction technique, and via clustering algorithms such as K-means, K-

medoids, and agglomerative hierarchical clustering, are used to do this. This analysis is used to 

determine the severity of vulnerabilities discovered in the dataset. This project's contribution is 

the analysis of the severity of vulnerabilities in the dataset and the identification of the top most 

serious vulnerabilities. 

As a result, we suggested a vulnerability analysis model based on clustering techniques in 

order to analyse vulnerabilities in a very effective and fast manner and to assist organisations in 

overcoming all of these challenges. Finally, the major goal of this study is to employ clustering 

to analyse vulnerabilities. The analysis was carried out with the help of a dataset provided by 

the US government. First and foremost, preprocessing is carried out. Clustering is a machine 

learning technique that is being employed. Following the evaluation, the performance of 

clustering methods was compared, and a result was reached. As a result, performance 

evaluation is a critical component of this project in order to achieve the best outcome across all 

clustering models.  

 

ABSTRACT 

 

Source code vulnerability is a weakness or a glitch in script used for software development 

purpose that make a way for an attacker to enter inside a network or system of an individual or 
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a company. The broad usage of software projects has resulted in the possibility of emerging 

vulnerabilities and potential consequences for their exploits.  

Existing code analysis methods are ineffectual at identifying vulnerabilities. This project 

investigates and presents vulnerabilities, particularly in source code. Vulnerabilities paves a 

way to businesses and individuals approachable to various kinds like malware and account 

takeovers. 

Vulnerability analysis affords an organisation with the essential information, awareness, and 

risk background it needs to recognise and respond to threats to its environment. The project's 

intention is to execute a vulnerability analysis and tool framework.  

A complete vulnerability evaluation can assist companies to enhance the safety of their 

structures. Vulnerability analysis also offers detailed steps for revealing current flaws and 

preventing future assaults. The analysis can also help improve your company's reputation and 

goodwill, inspiring greater confidence among customers. It can also assist in safeguarding the 

integrity of assets in the event of any malicious code being concealed in any of said assets.  

The proposed framework consists of five phases, including data acquisition, data preprocessing, 

feature selection, model building (unsupervised machine learning models) and performance 

evaluation.According to the Positive Technologies report 2020, 31% of companies dredged 

endeavor to impose source code vulnerabilities; nearly one-third of discovered risks 

accommodate software exploit shots. 

In this project, vulnerability analysis was done with unsupervised machine learning method 

using clustering techniques. Examining the vulnerabilities, especially in source code, is done 

and presented in this project. There are a variety of frequently used techniques, but clustering 

is the most appropriate. This algorithm focuses on identifying groups of data according to 

similarities. Hence, the method of clustering allows the data to form clusters. The fact that 

this is an unsupervised problem with no target class is one of the main reasons for its usage. 

As a result of the analysis, we are able to equip firms with awareness and knowledge in order 

to secure their products from becoming vulnerable.  

Keywords: Vulnerability, Analysis, K-Means, Silhouette, Clustering 
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METHODOLOGY 

4.1 Dataset Description 

Dataset/source: The source of the dataset is fromNational Vulnerability Database (NVD). 

The overall methodology for the vulnerability analysis is depicted in Figure 4.1. 

 

 

 

Figure 4.1: Methodology                                                                                                                                                                                                            

Tasks performed: 

Task 1: Load a dataset from file. 

Task 2: Pre-Process a dataset by removing the inessential data and label encoding it. 

Task 3: Reduce the elements of the information utilizing Principal Component Analysis (PCA). 
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Task 4: Applying Clustering calculations like K-Means, K-Medoids and Agglomerative 

Hierarchical Clustering. 

Task 5: Finally, assess its exhibition utilizing Silhouette coefficient and Davies-Bouldin Index 

RESULTS AND DISCUSSION 

 

This undertaking depends on the weaknesses gathered from the National Vulnerability 

Database (NVD), which is a data set of weaknesses. NVD stores weaknesses with CVE 

values, which incorporate weakness, shortcoming, and openness definitions. The uniqueness 

of the issues is safeguarded by utilizing one-of-a-kind identifiers (CVE numbers) from the 

CVE list. CVSS is used to calculate the severity of each vulnerability mentioned in NVD 

(Common Vulnerability Scoring System).The performance of this project can be done in five 

phases: 

 

Phase 1: Data Acquisition 

Data acquisition is the foundation for the project and most significant step. This is used to 

collect data from relevant sources before it can be stored, cleaned, pre-processed, and used for 

further mechanisms. Once acquired the appropriate data, it’s time to prepare it. The accuracy 

of your model is determined by the quality of the data you provide the machine. The data in 

this study comes from the National Vulnerability Database (NVD), which is kept up with by 

NIST. 

 The vulnerabilities detected in software products are represented by the samples in the 

dataset. 

 So, in machine learning terms, we're dealing with an unsupervised learning problem. 

 There are numerous approaches to creating such a model, but we will focus on clustering 

techniques. 

 

The National Vulnerability Database (NVD) records C/C++ code defects with labeled 

Common Vulnerabilities and Exposures (CVEs). For the NVD, announced weaknesses are 

investigated and included a normalized design. In particular, a dataset passage contains the 

accompanying: 
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1) A Common Vulnerability Exposure (CVE) ID number that extraordinarily distinguishes 

the weakness. 

2) The weakness passage's distribution date. 

3) The weakness passage's adjusted date. 

4) The weakness type/classification, as grouped by the Common Weakness Enumeration 

(CWE) code and the name related with the CWE code. 

5) The name of the vulnerability in the CWE name is related to the CWE code. 

6) The CVSS Score is specifically designed for assessing the severity of vulnerability. 

7) The summary provides a description of the vulnerability. 

 

 

ATTRIBUTE DTYPE DESCRIPTION 

mod_date Datetime 
The date the section was last 

adjusted 

pub_date Datetime 
The date the passage was 

distributed 

Cvss Float 

Normal Vulnerability Scoring 

System (CVSS) score, a proportion 

of the seriousness of a weakness 

cwe_code Categorical 

Common Weakness Enumeration 

(CWE) code, identifying the type of 

weakness 

cwe_name Categorical 
The name associated with the CWE 

code 

Summary Str A text summary of the vulnerability 
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access_authentication Categorical 

This measurement measures the 

times an assailant should verify to 

an objective to take advantage of 

weakness. 

access_complexity Categorical 

This measurement mirrors the 

intricacy of the assault expected to 

take advantage of the weakness. 

access_vector Categorical 

This metric reflects on how the 

vulnerability can be exploiting. The 

more remote vulnerability can be 

exploited the higher the rating. 

impact_availability Categorical 

Accessibility alludes to on how 

data assets can be access. This 

measurement reflects accessibility 

of an effectively taken advantage of 

weakness. 

impact_confidentiality Categorical 

This metric reflects information 

confidentiality of a successfully 

exploited vulnerability. 

impact_integrity Categorical 

Integrity refers to the trustworthiness 

of the information. This metrics 

reflects integrity of a successfully 

exploited vulnerability. 

 

            Table 4.1: Attributes and its description 

 

The CVSS Score is explicitly intended for surveying weakness to decide the seriousness of 

the weakness. Score goes from 1 to 10, with the issues having a score of 10 being the most 
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extreme and the ones having a score of 1 being the most un-serious. Table 4.2 shows the 

CVSS seriousness level edges. 

Label Score 

Low 0.0–3.9 

Medium 4.0–6.9 

High 7.0–8.9 

Critical 9.0–10.0 

 

Table 4.2: Common Vulnerability Scoring System (CVSS) 

 

NVD involves the CVSS standard for rating seriousness. The Common Vulnerability Scoring 

System (CVSS) is a free and open industry standard for evaluating the seriousness of PC 

framework security weaknesses. CVSS endeavors to appoint weakness seriousness scores, 

permitting responders to focus on reactions and assets in view of danger. Each CVSS is made 

out of three measurement gatherings: Base, Temporal, and Environmental, each comprising of a 

bunch of measurements. 

The Base Metrics 

The Base Metrics are made up of variety of components. Table 4.3 lists these components and 

their descriptions. 

S.No 
Base Metrics 

Component 
Explanation 

Metric Value & 

Description 

1 Access Vector (AV) 

This measurement considers how the weakness can 

take advantage of. The more far off weakness can be 

taken advantage of the greater the rating. 

Network: Can be 

exploit from a distance. 

Adjacent: Can be 

take advantage of remotely 
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yet restricted to the 

equivalent physical or 

legitimate organization. 

Local: Not 

expectorganization to take 

advantage of the weakness. 

It additionally can be taking 

advantage of by actually 

admittance to weakness. 

2 Access Complexity (AC) 
This measurement mirrors the intricacy of the assault 

expected to take advantage of the weakness. 

Low: Specialized condition 

doesn't exist and an 

aggressor can anticipate 

repeatable accomplishment 

againstthe weak part. 

Medium: Specialized 

condition to some degree 

exist and an assailant should 

spenda measure of work to 

exploit theweak part. 

High: Specialized 

that's what condition exist 

make aggressor should 

spenda measure of work to 

 exploit theweak part. 

3 

 

Access Authentication 

(Au) 

This measurement estimates the times an 

aggressor should validate to an objective to take 

advantage of weakness. 

None: Authentication does 

not expected to 

take advantage of weakness. 

Single: Authentication 

expect to take advantage of 

weakness. 

Multiple: Authentication 

required at least two in 

request to take advantage of 

weakness. 
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4 
Impact Confidentiality 

(IC) 

This measurement reflects data classification of an 

effectively taken advantage of weakness. 

None: There is no 

deficiency of data privacy 

on the framework. 

Partial: There is some 

deficiency of data 

classification. 

High: There is all out loss 

of data classification. 

5 Impact Integrity (II) 

Honesty alludes to the dependability of the data. 

This measurement reflects honesty of an effectively 

taken advantage of weakness. 

None: Modification of 

framework records is 

incomprehensible. 

Partial: Modification of 

some framework records is 

conceivable. 

High: Modification of 

whole framework records 

is conceivable. 

6 Impact Availability (IA) 

Accessibility alludes to on how data assets can be 

access. This measurement reflects accessibility of an 

effectively taken advantage of weakness. 

None: Performance and 

assets doesn't influence. 

Partial: Modification of 

some system records is 

possible. 

Complete: Performance 

and assets can be control 

effectively by assailant. 

 

Table 4.3:   Base Metric Components 

 

Phase 2: Data Pre-Processing 

The data set must be inspected, with data removed and altered as needed. The information is 

then completely dissected to furnish us with understanding into the informational collection 

and permit us to decipher the information accurately. Following that, we use PCA to perform 

dimensionality reduction. We bunch our information utilizing k-means, K-medoids, and the 
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AHC calculation with a lower aspect. We put our method to the test with clusters by using a 

silhouette coefficient and the Davies-Bouldin Score. After generating the dataset, it must be 

cleaned up, i.e., the irrelevant information must be operated. 

Originally, all null (NA) rows were eliminated. Categorical variables are present in the 

dataset. So, I'd like to convert this to numerical form because the machine cannot process 

categorical variables to produce results. To convert categorical variables to numeric form, 

label encoding was utilised. The EDA (Exploratory Data Analysis) method was then used to 

examine the dataset at a high level. The severity distribution of vulnerabilities was 

investigated using the CVSS score. To gain a complete grasp of the data, each attribute value 

is reviewed in depth.  

First, clean up the data set by deleting any extraneous data and making any necessary 

changes.The informational collection is shown and the highlights are analyzed in this review. 

 

Phase 3: Dimensionality Reduction (PCA) 

K-means, K-medoids, and Agglomerative Hierarchical Clustering algorithms were used to 

cluster unsupervised data. Cluster formation requires a minimum of two samples.K-means 

was applied to all of the Principal Component Analysis projections, yielding a most extreme 

difference with a dimensionality decrease of 2.As a result, the Clusters created utilizing the 

K-means Algorithm with the Principal Components aspect brought down to 2 were 

considered awesome. This calculation expects to keep data of interest in the cluster as near 

one another as conceivable by keeping the number of squared distances between the point and 

the group's centroid as little as could be expected. The amount of all distances between useful 

pieces of information and centroids is then processed by the K-means calculation, and every 

information point is allocated to the closest centroid.To determine the best potential cluster, 

K-means method uses the Expectation-Maximization approach. 

We created clusters based on the cve name and CVSS using K-means. The Primary 

Components Analysis (PCA) technique was then used to extract principal components. Novel 

variations are developed using principal component analysis and k-means clustering, and data 

from the National Vulnerability Database (NVD) is utilised.While settling on the quantity of 

primary parts, PCA utilized a 95 percent least fluctuation as a measure. To decrease the 

commotion, 5% of the variety is forgotten about. Out of the 10 segments in the cleaned 
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informational index, the PCA procedure yielded two head parts. The change dissemination is 

displayed in figure 5.1, and the intensity map grid of the vital parts coefficients, i.e., the 

connection between the primary parts and the cleaned informational index segments, is 

displayed in figure 5.2. 

 

Figure 5.1: Heat map of principal components 

 

Figure 5.2: Variance in each principal component 

 

Phase 4: Unsupervised Machine Learning Model Building 

In this phase, the data is ready for applying algorithms. As it is an unlabelled data, it doesn’t 

have a target variable so, clustering algorithms is more suitable than other algorithm 

techniques.As we have an unsupervised issue, clustering is utilized in finding normal 

gatherings in the component space of information.Clustering works on dataset in which there 

is no target variable i.e., Unlabelled data. It is more helpful than others as our aim is for 

analysis purpose, in order to learn more about the problem domain so called pattern discovery 

or knowledge discovery.Scikit-learn library gives a set-up of various clustering calculations 

to browse.Among all clustering algorithms, k-means, k-medoids and agglomerative 

hierarchical clustering were used. 
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Application of the k-means algorithm 

 

With dataset, the model can be created by initializing the k-means algorithm. But first, an 

appropriate k needs to be chosen as the k-means algorithm needs this parameter to initialize. 

The elbow method is a good start for finding the proper k. This elbow method could normally 

also be used for choosing the number of principal components, In figure 4.3, there is an elbow 

to choose the number of principal components. 

 

Elbow method 

In any unsupervised technique, determining the optimal number of clusters into which the 

data can be divided is critical. The Elbow Method is one of the most well-known criteria for 

determining the ideal value of k. The elbow approach is a strategy for finding the best 

parameter in algorithms like k-means and PCA. The objective is to utilize K-Means to sort 

out the ideal number of clusters for different group sizes. 

 

 

 

Figure5.3: Elbow method 

We initially scaled informational index by normalization so there won't be any predisposition 

while applying PCA. From that point forward, we applied PCA to decrease the aspects in our 

informational index. PCA additionally diminished some noise when it leaved out 5% change 

out of the informational collection. 

K-Means Clustering: 

The k-means calculation produces bunches. These clusters are grouped by similarities in 

terms of values for each feature of each data point. This calculation can deliver various 

results, as this algorithm requires randomization during initialization. Accordingly, the 
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similitude’s on which the groups are based might be different for every execution of the 

calculation. Since the calculation doesn't have any idea what each component implies, how 

groups are bunched in the way that they are might be wanted or undesirable, expected or 

unforeseen. It is up to them to determine yet if the clusters are plausible for our given 

problem, which may necessitate running the grouping calculation on numerous occasions. 

Accordingly, it is basic to approve the groups created prior to continuing to the subsequent 

stage. The calculation's means are as per the following: 

1. Choose various k clusters to segment n data of interest into. 

2. Initialize k cluster centroids arbitrarily by choosing focuses in the space as the data of 

interest. 

3. For every data of interest, process the blunder for each cluster centroid. Appoint the 

information highlight the group of the cluster centroid with the base mistake. 

4. For each cluster, figure the mean of the multitude of useful pieces of information in the 

group. This implies this is the new bunch centroid. 

5. Repeat stages 3 and 4 until the new cluster centroids don't change. 

 

Algorithm: K means Algorithm 

Result: Find k clusters using K-means  

 X← {x1, x2, x3...xn} V ← {v1, v2, v3...vk} (a set of centroids chosen at random) 

 Choose k centroids at random. 

 Ascertain the distance between every piece of information while information focuses are 

reassigned. Appoint information focuses to the centroid with a base distance of 

 Recalculate the new group utilizing: vi = 1 ki Pki j = 1 xi (where ki addresses the 

quantity of data of interest in the ith cluster) 

 Recalculate the distance between every data of interest and the new centroid end. 

 It shows the clusters acquired utilizing K-means. Examination of our outcomes shows the 

conveyance of seriousness in various spaces, similar to Memory and Buffer Overflow 

weaknesses, and Network and Authentication weaknesses. 

 

K-Medoids clustering: 

K-Medoids is a grouping calculation that works similarly that K-Means does. The manner in 

which it picks group focuses shifts fiercely from the K-Means calculation.The former takes 
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the average of a cluster's points as its centre, whereas the latter always chooses the actual data 

points from the clusters as their centres.Thus, the K-medoids calculation is more commotion 

lenient than the K-means calculation. 

Algorithm 

Step1: Initialize k bunches in the given information space D. 

Step2: Randomly pick k items from n objects in information and appoint k items to k groups 

with the end goal that each article is allotted to one and only one bunch. Subsequently, it turns 

into an underlying medoids for each group. 

Step3: For all leftover non-medoid objects, figure the Cost (distance as registered by means 

of Euclidean, Manhattan, or Chebyshev strategies) from all medoids. 

Step4: Now, assign each leftover non-medoid object to that bunch whose medoid distance to 

that item is least when contrasted with different groups medoid. 

Step5: Compute the complete expense for example it is the complete amount of all the non-

medoid objects distance from its bunch medoid and appoint it to dj. 

Step6: Randomly select a non-medoid object i. 

Step7: Now, impermanent trade the article I with medoid j and Repeat Step5 to recalculate 

complete expense and allocate it to di. 

Step8: If di<dj then make the transitory trade in Step7 long-lasting to shape the new 

arrangement of k medoid. Else fix the brief trade done in Step 7. 

Step9: Repeat Step 4, Step 5, Step 6, Step 7, Step 8. Until no change; 

 

Agglomerative Hierarchical Clustering: 

In information mining and measurements, progressive grouping investigation is a strategy for 

bunch examination that looks to fabricate a pecking order of groups i.e., tree-type structure in 

light of the pecking order. The agglomerative clustering is the most well-known kind of 

various leveled bunching used to bunch objects in groups in light of their closeness. It's 

otherwise called AGNES (Agglomerative Nesting). The calculation begins by regarding each 

item as a singleton bunch. Then, sets of bunches are progressively converged until all groups 
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have been converted into one major group containing all articles. The outcome is a tree-based 

portrayal of the articles, named dendrogram. 

How it works: 

1. The procedure begins with determining the dissimilarity between the N objects. 

2. Next, two objects that, when clustered together, minimise a specific agglomeration 

criterion are clustered together, resulting in the creation of a class that includes these two 

objects. 

3. The agglomeration criterion is then used to compute the dissimilarity between this class 

and the N-2 other objects. 

4. The two things or classes of objects whose grouping reduces the agglomeration criterion 

are subsequently grouped together. 

5. Repeat step 4 until all of the objects have been grouped. 

 

Phase 5: Performance Evaluation 

In this phase, evaluation was done based on how it performed on applying the algorithms and 

how well the clusters formed basis. For evaluation, we picked the two most popular methods 

such as silhouette coefficient, which is most effective for performance evaluation compared 

to other methods. Another one is Davies-Bouldin index. According to our survey, researchers 

utilise a variety of evaluation measures to assess the efficacy of various clustering and 

dimensionality reduction techniques. A selection of commonly used evaluation metrics is 

presented in Table 4.4. 

Evaluation Metric Definition Formula 

Silhouette 

Coefficient 

The Silhouette Coefficient is the most widely 

recognized method for consolidating the 

measurements of Cohesion and division in a solitary 

measure. 

 

where: 

N: Number of data points 

in the same cluster, 

S(i): Data point in the 
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cluster, i = 1,2, 3…. n, 

Davies-Bouldin Index 
Davies-Bouldin list is determined as the normal 

likeness of each bunch with a group generally like it. 

 

Where: 

N: Total number of clusters 

Di: Similarity measure of 

each cluster. 

 

 

Table 4.4: Performance Evaluation Metrics 

 

A crucial element of the clustering data process is evaluating the outcomes of a clustering 

algorithm.While investigating clustering results, a few angles should be considered for the 

approval of the calculation results: 

 Deciding the clustering propensity in the information. 

 Deciding the right number of clusters. 

 Evaluating the nature of the clustering results without outer data. 

 contrasting the outcomes with outer information; and 

 Figuring out which of two arrangements of clusters is prevalent. 
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Silhouette coefficient 

The silhouette coefficient is the most commonly used method for combining cohesion and 

separation statistics into a single statistic. The three stages for working out the outline 

coefficient at a particular position are as per the following.The typical distance a(i) between 

every model and everything different occurrences in a similar cluster is determined: 

 

where: 

a(i): It is the average distance between i and all the other data points in the cluster to which i 

belongs. For every model, the base typical distance b(i) between the model and the models 

contained in each bunch not containing the investigated model: 

 

where: 

b(i): It is the average distance from i to all clusters to which i does not belong. For every 

model, the outline not entirely set in stone by the accompanying articulation: 

 

where: 

s(i): It is the silhouette coefficient of the data point i. 
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For every model in our informational collection, the outline coefficient is characterized in the 

stretch [-1, 1]. The worldwide outline coefficient is basically the normal of the outline 

coefficients for every individual model: 

 

Rather than other consolidated measures, the outline coefficient gives a clear structure to 

capability. Positive qualities show that groups are very much isolated. Negative qualities show 

that the groups are combined as one. At the point when the outline coefficient is zero, it shows 

that the information is conveyed consistently across Euclidean space. Tragically, the outline 

coefficient's high computational intricacy, O (dn2), makes it unreasonable while managing 

enormous informational indexes. 

This method is used because the ground truth labels are not known; evaluation must be 

performed using the model itself. This is an example for such evaluation, where a higher 

silhouette score relates to a model with better clusters. This method is performed with the 

module Sklearn.metrics.Silhouette_ScoreThis technique is characterized for each example in 

the cluster and it is made out of two scores. They are, 

1. The mean distance between an example and different focuses in a similar cluster. 

2. The mean distance between an example and any remaining focuses in the following 

closest cluster. 

 

The silhouette coefficient for a bunch of tests is given as the mean of the outline for each 

example. 

The silhouette score indicates: 

 -1 refers, the clusters are not formed well or it is the indication of incorrect clustering. 

 +1 refers the clusters formed well and it indicates highly dense clustering. 

 0 refers to the clusters are overlapped. 
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Through silhouette coefficient, the evaluation results we obtained through k-means is 0.98. 

which approximately equals to 1. And through k-medoids the score is 0.54. And, through 

agglomerative clustering we got a score of 0.30. 

 

 

Figure5.4: Results Obtained through silhouette coefficient 

By comparing the three algorithms performance, K-means topped among other two 

algorithms with a score of 0.98 which indicates it formed highly dense clusters and provides a 

formation of good clustering. Through the evaluation, we came to a conclusion that, k-means 

is more suitable algorithm and produce a good result among other two algorithms performed. 

 

Davies-Bouldin index 

A connected inward approval method was proposed in that considers the proportion of intra-

cluster dissipate to between bunch detachability across all k gatherings in a clustering. 

Officially, the DB file is characterized as a component of each group's vicinity to its closest 

neighbor: 

 

As clusters become more conservative and particular, this worth will diminish, making more 

modest qualities for this list attractive. The DB record has a critical detriment in that it comes 

up short on fixed range, with a result esteem simply restricted to being non-negative, making 

understanding troublesome. Moreover, observational proof proposes that while endeavoring to 

choose k, this file will in general misjudge the quantity of gatherings, particularly for feebly 
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grouped information. DB record can be utilized to assess the model, where lower score 

connects with a model with better partition between the groups. 

0 is the least conceivable score, esteems more like zero demonstrates a superior parcel. 

Through DB index, the evaluation results we obtained through k-means is 0.064. And through 

k-medoids the score is 1.55. And, through agglomerative clustering we got a score of 1.37. 

 

Figure 5.5: Results Obtained through Davies-Bouldin Index 

By comparing the three algorithms performance, in this also K-means topped among other 

two algorithms with a score of 0.06 which has a least possible score that indicates the better 

cluster formation. Through the evaluation, we came to a conclusion that, k-means is more 

suitable algorithm and produce a good result among other two algorithms performed. 

 
 

CONCLUSION AND SCOPE FOR FUTURE ENHANCEMENT 

The main intention of this project is to check the quality of the clusters formed through 

clustering algorithms and it is not an easy problem to solve.  The escalating cyber danger was 

the driving force behind this effort. In this project, we analysed vulnerabilities in source code, 

we used a few unsupervised clustering techniques. By learning about vulnerabilities in the 

dataset, this project provides an ideal solution to organisations with the goal of enhancing 

vulnerability analysis efficacy. As a result, the K-Means algorithm looks to be the most 

efficient method for analysing vulnerabilities exactly. This project's future enhancements 

could include a strategy for integrating more and more technologies that will be integrated 

with new domains in the future to perform automated vulnerability analysis on a large-scale 

and cross-architecture basis. 
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ANNEXURE 

Screenshots 

 

 

 

Fig.1: Loading Dataset 

 

 

 

 

Fig.2: Attributes Information 
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                                                                    Fig3: Heatmap 

 

 

 

 

Fig.4: Count Plot for Access_Authentication 
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Fig.5: Count Plot for Access_Complexity 

 

 

 

 

 

 

Fig.6: Count Plot for Access Vector 
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Fig.7: Count Plot for Impact_Availability 

 

 

 

 

Fig.8: Count Plot for Impact Confidentiality 
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Fig.9: Count Plot for Impact Integrity 

 

 

 

 

 

Fig.10: Histogram 
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Fig.11: Common Weakness Enumeration Code 

 

 

 

Fig.12: Box Plot 

 

 

Fig.13: Joint Plot 
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Fig.14: Count plot of cwe_code and cvss 

 

 

 

Fig.15: Pair Plot of cvss 

 

Fig.16: Dist Plot of cvss 
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Fig.17: Growth Rate of Vulnerabilities 

 

 

 

 

 

Fig.18: Severity Distribution of Vulnerabilities 
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Fig.19: Value Distribution 
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Fig.20: Elbow Method 

 

 

 

Fig.21: Principal Components 

 

 

Fig.22: Heatmap after applying PCA 
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Fig.23: Variance of principal Components 

 

 

Fig.23: 3D projection of PCA 
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Fig.24: Inertia 

 

 

 

 

Fig.25: K-Medoid Clustering 
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Fig.26: Hierarchical Agglomerative Clustering 
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Fig.27: Results obtained through Silhouette Score 

 

 

 

Fig.28: Results obtained through Davies Bouldin Index 

 

 

 

 

Fig.29: Clusters Formed 

 

 

 



37 

 

 

 

  

Fig.30: Vulnerabilities Over Time 
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                                                  Fig.31:  Top Ten Vulnerabilities 

 

 

 

Fig.32:  Top CWE Cod 

 



39 

 

 

 

 

 

Fig.33: Exploited Products 
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