
VULNERABILITY ANALYSIS USING UNSUPERVISED

MACHINE LEARNING METHODS

Submitted By

K. MEGHA SREE (20PIT005)

 MASTER OF SCIENCE IN INFORMATION TECHNOLOGY

1

INTRODUCTION

Even ordinary people are now bare to software. Millions of individuals around the sphere use

smart devices. Everything is software-based. As per the NIST study, the quantity of IT

weaknesses has been expanding throughout the course of recent years. Vulnerabilities allow an

attacker to execute code or gain access to the memory of a target machine.This project's

purpose is to investigate common vulnerabilities and exposures (CVEs).While there are other

vulnerability databases, we'll concentrate on the National Vulnerability Database because it's

the most widely utilised (NVD). It is the industry standard database perfectly capture all

vulnerabilities revealed publicly.

This analysis emphasizes the extent and tries to impose the vulnerability, and how severe each

type is by analyzing it. Data analysis and PCA (Principal Component Analysis) which is a

dimensionality reduction technique, and via clustering algorithms such as K-means, K-

medoids, and agglomerative hierarchical clustering, are used to do this. This analysis is used to

determine the severity of vulnerabilities discovered in the dataset. This project's contribution is

the analysis of the severity of vulnerabilities in the dataset and the identification of the top most

serious vulnerabilities.

As a result, we suggested a vulnerability analysis model based on clustering techniques in

order to analyse vulnerabilities in a very effective and fast manner and to assist organisations in

overcoming all of these challenges. Finally, the major goal of this study is to employ clustering

to analyse vulnerabilities. The analysis was carried out with the help of a dataset provided by

the US government. First and foremost, preprocessing is carried out. Clustering is a machine

learning technique that is being employed. Following the evaluation, the performance of

clustering methods was compared, and a result was reached. As a result, performance

evaluation is a critical component of this project in order to achieve the best outcome across all

clustering models.

ABSTRACT

Source code vulnerability is a weakness or a glitch in script used for software development

purpose that make a way for an attacker to enter inside a network or system of an individual or

2

a company. The broad usage of software projects has resulted in the possibility of emerging

vulnerabilities and potential consequences for their exploits.

Existing code analysis methods are ineffectual at identifying vulnerabilities. This project

investigates and presents vulnerabilities, particularly in source code. Vulnerabilities paves a

way to businesses and individuals approachable to various kinds like malware and account

takeovers.

Vulnerability analysis affords an organisation with the essential information, awareness, and

risk background it needs to recognise and respond to threats to its environment. The project's

intention is to execute a vulnerability analysis and tool framework.

A complete vulnerability evaluation can assist companies to enhance the safety of their

structures. Vulnerability analysis also offers detailed steps for revealing current flaws and

preventing future assaults. The analysis can also help improve your company's reputation and

goodwill, inspiring greater confidence among customers. It can also assist in safeguarding the

integrity of assets in the event of any malicious code being concealed in any of said assets.

The proposed framework consists of five phases, including data acquisition, data preprocessing,

feature selection, model building (unsupervised machine learning models) and performance

evaluation.According to the Positive Technologies report 2020, 31% of companies dredged

endeavor to impose source code vulnerabilities; nearly one-third of discovered risks

accommodate software exploit shots.

In this project, vulnerability analysis was done with unsupervised machine learning method

using clustering techniques. Examining the vulnerabilities, especially in source code, is done

and presented in this project. There are a variety of frequently used techniques, but clustering

is the most appropriate. This algorithm focuses on identifying groups of data according to

similarities. Hence, the method of clustering allows the data to form clusters. The fact that

this is an unsupervised problem with no target class is one of the main reasons for its usage.

As a result of the analysis, we are able to equip firms with awareness and knowledge in order

to secure their products from becoming vulnerable.

Keywords: Vulnerability, Analysis, K-Means, Silhouette, Clustering

3

METHODOLOGY

4.1 Dataset Description

Dataset/source: The source of the dataset is fromNational Vulnerability Database (NVD).

The overall methodology for the vulnerability analysis is depicted in Figure 4.1.

Figure 4.1: Methodology

Tasks performed:

Task 1: Load a dataset from file.

Task 2: Pre-Process a dataset by removing the inessential data and label encoding it.

Task 3: Reduce the elements of the information utilizing Principal Component Analysis (PCA).

4

Task 4: Applying Clustering calculations like K-Means, K-Medoids and Agglomerative

Hierarchical Clustering.

Task 5: Finally, assess its exhibition utilizing Silhouette coefficient and Davies-Bouldin Index

RESULTS AND DISCUSSION

This undertaking depends on the weaknesses gathered from the National Vulnerability

Database (NVD), which is a data set of weaknesses. NVD stores weaknesses with CVE

values, which incorporate weakness, shortcoming, and openness definitions. The uniqueness

of the issues is safeguarded by utilizing one-of-a-kind identifiers (CVE numbers) from the

CVE list. CVSS is used to calculate the severity of each vulnerability mentioned in NVD

(Common Vulnerability Scoring System).The performance of this project can be done in five

phases:

Phase 1: Data Acquisition

Data acquisition is the foundation for the project and most significant step. This is used to

collect data from relevant sources before it can be stored, cleaned, pre-processed, and used for

further mechanisms. Once acquired the appropriate data, it’s time to prepare it. The accuracy

of your model is determined by the quality of the data you provide the machine. The data in

this study comes from the National Vulnerability Database (NVD), which is kept up with by

NIST.

 The vulnerabilities detected in software products are represented by the samples in the

dataset.

 So, in machine learning terms, we're dealing with an unsupervised learning problem.

 There are numerous approaches to creating such a model, but we will focus on clustering

techniques.

The National Vulnerability Database (NVD) records C/C++ code defects with labeled

Common Vulnerabilities and Exposures (CVEs). For the NVD, announced weaknesses are

investigated and included a normalized design. In particular, a dataset passage contains the

accompanying:

5

1) A Common Vulnerability Exposure (CVE) ID number that extraordinarily distinguishes

the weakness.

2) The weakness passage's distribution date.

3) The weakness passage's adjusted date.

4) The weakness type/classification, as grouped by the Common Weakness Enumeration

(CWE) code and the name related with the CWE code.

5) The name of the vulnerability in the CWE name is related to the CWE code.

6) The CVSS Score is specifically designed for assessing the severity of vulnerability.

7) The summary provides a description of the vulnerability.

ATTRIBUTE DTYPE DESCRIPTION

mod_date Datetime
The date the section was last

adjusted

pub_date Datetime
The date the passage was

distributed

Cvss Float

Normal Vulnerability Scoring

System (CVSS) score, a proportion

of the seriousness of a weakness

cwe_code Categorical

Common Weakness Enumeration

(CWE) code, identifying the type of

weakness

cwe_name Categorical
The name associated with the CWE

code

Summary Str A text summary of the vulnerability

6

access_authentication Categorical

This measurement measures the

times an assailant should verify to

an objective to take advantage of

weakness.

access_complexity Categorical

This measurement mirrors the

intricacy of the assault expected to

take advantage of the weakness.

access_vector Categorical

This metric reflects on how the

vulnerability can be exploiting. The

more remote vulnerability can be

exploited the higher the rating.

impact_availability Categorical

Accessibility alludes to on how

data assets can be access. This

measurement reflects accessibility

of an effectively taken advantage of

weakness.

impact_confidentiality Categorical

This metric reflects information

confidentiality of a successfully

exploited vulnerability.

impact_integrity Categorical

Integrity refers to the trustworthiness

of the information. This metrics

reflects integrity of a successfully

exploited vulnerability.

 Table 4.1: Attributes and its description

The CVSS Score is explicitly intended for surveying weakness to decide the seriousness of

the weakness. Score goes from 1 to 10, with the issues having a score of 10 being the most

7

extreme and the ones having a score of 1 being the most un-serious. Table 4.2 shows the

CVSS seriousness level edges.

Label Score

Low 0.0–3.9

Medium 4.0–6.9

High 7.0–8.9

Critical 9.0–10.0

Table 4.2: Common Vulnerability Scoring System (CVSS)

NVD involves the CVSS standard for rating seriousness. The Common Vulnerability Scoring

System (CVSS) is a free and open industry standard for evaluating the seriousness of PC

framework security weaknesses. CVSS endeavors to appoint weakness seriousness scores,

permitting responders to focus on reactions and assets in view of danger. Each CVSS is made

out of three measurement gatherings: Base, Temporal, and Environmental, each comprising of a

bunch of measurements.

The Base Metrics

The Base Metrics are made up of variety of components. Table 4.3 lists these components and

their descriptions.

S.No
Base Metrics

Component
Explanation

Metric Value &

Description

1 Access Vector (AV)

This measurement considers how the weakness can

take advantage of. The more far off weakness can be

taken advantage of the greater the rating.

Network: Can be

exploit from a distance.

Adjacent: Can be

take advantage of remotely

8

yet restricted to the

equivalent physical or

legitimate organization.

Local: Not

expectorganization to take

advantage of the weakness.

It additionally can be taking

advantage of by actually

admittance to weakness.

2 Access Complexity (AC)
This measurement mirrors the intricacy of the assault

expected to take advantage of the weakness.

Low: Specialized condition

doesn't exist and an

aggressor can anticipate

repeatable accomplishment

againstthe weak part.

Medium: Specialized

condition to some degree

exist and an assailant should

spenda measure of work to

exploit theweak part.

High: Specialized

that's what condition exist

make aggressor should

spenda measure of work to

 exploit theweak part.

3

Access Authentication

(Au)

This measurement estimates the times an

aggressor should validate to an objective to take

advantage of weakness.

None: Authentication does

not expected to

take advantage of weakness.

Single: Authentication

expect to take advantage of

weakness.

Multiple: Authentication

required at least two in

request to take advantage of

weakness.

9

4
Impact Confidentiality

(IC)

This measurement reflects data classification of an

effectively taken advantage of weakness.

None: There is no

deficiency of data privacy

on the framework.

Partial: There is some

deficiency of data

classification.

High: There is all out loss

of data classification.

5 Impact Integrity (II)

Honesty alludes to the dependability of the data.

This measurement reflects honesty of an effectively

taken advantage of weakness.

None: Modification of

framework records is

incomprehensible.

Partial: Modification of

some framework records is

conceivable.

High: Modification of

whole framework records

is conceivable.

6 Impact Availability (IA)

Accessibility alludes to on how data assets can be

access. This measurement reflects accessibility of an

effectively taken advantage of weakness.

None: Performance and

assets doesn't influence.

Partial: Modification of

some system records is

possible.

Complete: Performance

and assets can be control

effectively by assailant.

Table 4.3: Base Metric Components

Phase 2: Data Pre-Processing

The data set must be inspected, with data removed and altered as needed. The information is

then completely dissected to furnish us with understanding into the informational collection

and permit us to decipher the information accurately. Following that, we use PCA to perform

dimensionality reduction. We bunch our information utilizing k-means, K-medoids, and the

10

AHC calculation with a lower aspect. We put our method to the test with clusters by using a

silhouette coefficient and the Davies-Bouldin Score. After generating the dataset, it must be

cleaned up, i.e., the irrelevant information must be operated.

Originally, all null (NA) rows were eliminated. Categorical variables are present in the

dataset. So, I'd like to convert this to numerical form because the machine cannot process

categorical variables to produce results. To convert categorical variables to numeric form,

label encoding was utilised. The EDA (Exploratory Data Analysis) method was then used to

examine the dataset at a high level. The severity distribution of vulnerabilities was

investigated using the CVSS score. To gain a complete grasp of the data, each attribute value

is reviewed in depth.

First, clean up the data set by deleting any extraneous data and making any necessary

changes.The informational collection is shown and the highlights are analyzed in this review.

Phase 3: Dimensionality Reduction (PCA)

K-means, K-medoids, and Agglomerative Hierarchical Clustering algorithms were used to

cluster unsupervised data. Cluster formation requires a minimum of two samples.K-means

was applied to all of the Principal Component Analysis projections, yielding a most extreme

difference with a dimensionality decrease of 2.As a result, the Clusters created utilizing the

K-means Algorithm with the Principal Components aspect brought down to 2 were

considered awesome. This calculation expects to keep data of interest in the cluster as near

one another as conceivable by keeping the number of squared distances between the point and

the group's centroid as little as could be expected. The amount of all distances between useful

pieces of information and centroids is then processed by the K-means calculation, and every

information point is allocated to the closest centroid.To determine the best potential cluster,

K-means method uses the Expectation-Maximization approach.

We created clusters based on the cve name and CVSS using K-means. The Primary

Components Analysis (PCA) technique was then used to extract principal components. Novel

variations are developed using principal component analysis and k-means clustering, and data

from the National Vulnerability Database (NVD) is utilised.While settling on the quantity of

primary parts, PCA utilized a 95 percent least fluctuation as a measure. To decrease the

commotion, 5% of the variety is forgotten about. Out of the 10 segments in the cleaned

11

informational index, the PCA procedure yielded two head parts. The change dissemination is

displayed in figure 5.1, and the intensity map grid of the vital parts coefficients, i.e., the

connection between the primary parts and the cleaned informational index segments, is

displayed in figure 5.2.

Figure 5.1: Heat map of principal components

Figure 5.2: Variance in each principal component

Phase 4: Unsupervised Machine Learning Model Building

In this phase, the data is ready for applying algorithms. As it is an unlabelled data, it doesn’t

have a target variable so, clustering algorithms is more suitable than other algorithm

techniques.As we have an unsupervised issue, clustering is utilized in finding normal

gatherings in the component space of information.Clustering works on dataset in which there

is no target variable i.e., Unlabelled data. It is more helpful than others as our aim is for

analysis purpose, in order to learn more about the problem domain so called pattern discovery

or knowledge discovery.Scikit-learn library gives a set-up of various clustering calculations

to browse.Among all clustering algorithms, k-means, k-medoids and agglomerative

hierarchical clustering were used.

12

Application of the k-means algorithm

With dataset, the model can be created by initializing the k-means algorithm. But first, an

appropriate k needs to be chosen as the k-means algorithm needs this parameter to initialize.

The elbow method is a good start for finding the proper k. This elbow method could normally

also be used for choosing the number of principal components, In figure 4.3, there is an elbow

to choose the number of principal components.

Elbow method

In any unsupervised technique, determining the optimal number of clusters into which the

data can be divided is critical. The Elbow Method is one of the most well-known criteria for

determining the ideal value of k. The elbow approach is a strategy for finding the best

parameter in algorithms like k-means and PCA. The objective is to utilize K-Means to sort

out the ideal number of clusters for different group sizes.

Figure5.3: Elbow method

We initially scaled informational index by normalization so there won't be any predisposition

while applying PCA. From that point forward, we applied PCA to decrease the aspects in our

informational index. PCA additionally diminished some noise when it leaved out 5% change

out of the informational collection.

K-Means Clustering:

The k-means calculation produces bunches. These clusters are grouped by similarities in

terms of values for each feature of each data point. This calculation can deliver various

results, as this algorithm requires randomization during initialization. Accordingly, the

13

similitude’s on which the groups are based might be different for every execution of the

calculation. Since the calculation doesn't have any idea what each component implies, how

groups are bunched in the way that they are might be wanted or undesirable, expected or

unforeseen. It is up to them to determine yet if the clusters are plausible for our given

problem, which may necessitate running the grouping calculation on numerous occasions.

Accordingly, it is basic to approve the groups created prior to continuing to the subsequent

stage. The calculation's means are as per the following:

1. Choose various k clusters to segment n data of interest into.

2. Initialize k cluster centroids arbitrarily by choosing focuses in the space as the data of

interest.

3. For every data of interest, process the blunder for each cluster centroid. Appoint the

information highlight the group of the cluster centroid with the base mistake.

4. For each cluster, figure the mean of the multitude of useful pieces of information in the

group. This implies this is the new bunch centroid.

5. Repeat stages 3 and 4 until the new cluster centroids don't change.

Algorithm: K means Algorithm

Result: Find k clusters using K-means

 X← {x1, x2, x3...xn} V ← {v1, v2, v3...vk} (a set of centroids chosen at random)

 Choose k centroids at random.

 Ascertain the distance between every piece of information while information focuses are

reassigned. Appoint information focuses to the centroid with a base distance of

 Recalculate the new group utilizing: vi = 1 ki Pki j = 1 xi (where ki addresses the

quantity of data of interest in the ith cluster)

 Recalculate the distance between every data of interest and the new centroid end.

 It shows the clusters acquired utilizing K-means. Examination of our outcomes shows the

conveyance of seriousness in various spaces, similar to Memory and Buffer Overflow

weaknesses, and Network and Authentication weaknesses.

K-Medoids clustering:

K-Medoids is a grouping calculation that works similarly that K-Means does. The manner in

which it picks group focuses shifts fiercely from the K-Means calculation.The former takes

14

the average of a cluster's points as its centre, whereas the latter always chooses the actual data

points from the clusters as their centres.Thus, the K-medoids calculation is more commotion

lenient than the K-means calculation.

Algorithm

Step1: Initialize k bunches in the given information space D.

Step2: Randomly pick k items from n objects in information and appoint k items to k groups

with the end goal that each article is allotted to one and only one bunch. Subsequently, it turns

into an underlying medoids for each group.

Step3: For all leftover non-medoid objects, figure the Cost (distance as registered by means

of Euclidean, Manhattan, or Chebyshev strategies) from all medoids.

Step4: Now, assign each leftover non-medoid object to that bunch whose medoid distance to

that item is least when contrasted with different groups medoid.

Step5: Compute the complete expense for example it is the complete amount of all the non-

medoid objects distance from its bunch medoid and appoint it to dj.

Step6: Randomly select a non-medoid object i.

Step7: Now, impermanent trade the article I with medoid j and Repeat Step5 to recalculate

complete expense and allocate it to di.

Step8: If di<dj then make the transitory trade in Step7 long-lasting to shape the new

arrangement of k medoid. Else fix the brief trade done in Step 7.

Step9: Repeat Step 4, Step 5, Step 6, Step 7, Step 8. Until no change;

Agglomerative Hierarchical Clustering:

In information mining and measurements, progressive grouping investigation is a strategy for

bunch examination that looks to fabricate a pecking order of groups i.e., tree-type structure in

light of the pecking order. The agglomerative clustering is the most well-known kind of

various leveled bunching used to bunch objects in groups in light of their closeness. It's

otherwise called AGNES (Agglomerative Nesting). The calculation begins by regarding each

item as a singleton bunch. Then, sets of bunches are progressively converged until all groups

15

have been converted into one major group containing all articles. The outcome is a tree-based

portrayal of the articles, named dendrogram.

How it works:

1. The procedure begins with determining the dissimilarity between the N objects.

2. Next, two objects that, when clustered together, minimise a specific agglomeration

criterion are clustered together, resulting in the creation of a class that includes these two

objects.

3. The agglomeration criterion is then used to compute the dissimilarity between this class

and the N-2 other objects.

4. The two things or classes of objects whose grouping reduces the agglomeration criterion

are subsequently grouped together.

5. Repeat step 4 until all of the objects have been grouped.

Phase 5: Performance Evaluation

In this phase, evaluation was done based on how it performed on applying the algorithms and

how well the clusters formed basis. For evaluation, we picked the two most popular methods

such as silhouette coefficient, which is most effective for performance evaluation compared

to other methods. Another one is Davies-Bouldin index. According to our survey, researchers

utilise a variety of evaluation measures to assess the efficacy of various clustering and

dimensionality reduction techniques. A selection of commonly used evaluation metrics is

presented in Table 4.4.

Evaluation Metric Definition Formula

Silhouette

Coefficient

The Silhouette Coefficient is the most widely

recognized method for consolidating the

measurements of Cohesion and division in a solitary

measure.

where:

N: Number of data points

in the same cluster,

S(i): Data point in the

16

cluster, i = 1,2, 3…. n,

Davies-Bouldin Index
Davies-Bouldin list is determined as the normal

likeness of each bunch with a group generally like it.

Where:

N: Total number of clusters

Di: Similarity measure of

each cluster.

Table 4.4: Performance Evaluation Metrics

A crucial element of the clustering data process is evaluating the outcomes of a clustering

algorithm.While investigating clustering results, a few angles should be considered for the

approval of the calculation results:

 Deciding the clustering propensity in the information.

 Deciding the right number of clusters.

 Evaluating the nature of the clustering results without outer data.

 contrasting the outcomes with outer information; and

 Figuring out which of two arrangements of clusters is prevalent.

17

Silhouette coefficient

The silhouette coefficient is the most commonly used method for combining cohesion and

separation statistics into a single statistic. The three stages for working out the outline

coefficient at a particular position are as per the following.The typical distance a(i) between

every model and everything different occurrences in a similar cluster is determined:

where:

a(i): It is the average distance between i and all the other data points in the cluster to which i

belongs. For every model, the base typical distance b(i) between the model and the models

contained in each bunch not containing the investigated model:

where:

b(i): It is the average distance from i to all clusters to which i does not belong. For every

model, the outline not entirely set in stone by the accompanying articulation:

where:

s(i): It is the silhouette coefficient of the data point i.

18

For every model in our informational collection, the outline coefficient is characterized in the

stretch [-1, 1]. The worldwide outline coefficient is basically the normal of the outline

coefficients for every individual model:

Rather than other consolidated measures, the outline coefficient gives a clear structure to

capability. Positive qualities show that groups are very much isolated. Negative qualities show

that the groups are combined as one. At the point when the outline coefficient is zero, it shows

that the information is conveyed consistently across Euclidean space. Tragically, the outline

coefficient's high computational intricacy, O (dn2), makes it unreasonable while managing

enormous informational indexes.

This method is used because the ground truth labels are not known; evaluation must be

performed using the model itself. This is an example for such evaluation, where a higher

silhouette score relates to a model with better clusters. This method is performed with the

module Sklearn.metrics.Silhouette_ScoreThis technique is characterized for each example in

the cluster and it is made out of two scores. They are,

1. The mean distance between an example and different focuses in a similar cluster.

2. The mean distance between an example and any remaining focuses in the following

closest cluster.

The silhouette coefficient for a bunch of tests is given as the mean of the outline for each

example.

The silhouette score indicates:

 -1 refers, the clusters are not formed well or it is the indication of incorrect clustering.

 +1 refers the clusters formed well and it indicates highly dense clustering.

 0 refers to the clusters are overlapped.

19

Through silhouette coefficient, the evaluation results we obtained through k-means is 0.98.

which approximately equals to 1. And through k-medoids the score is 0.54. And, through

agglomerative clustering we got a score of 0.30.

Figure5.4: Results Obtained through silhouette coefficient

By comparing the three algorithms performance, K-means topped among other two

algorithms with a score of 0.98 which indicates it formed highly dense clusters and provides a

formation of good clustering. Through the evaluation, we came to a conclusion that, k-means

is more suitable algorithm and produce a good result among other two algorithms performed.

Davies-Bouldin index

A connected inward approval method was proposed in that considers the proportion of intra-

cluster dissipate to between bunch detachability across all k gatherings in a clustering.

Officially, the DB file is characterized as a component of each group's vicinity to its closest

neighbor:

As clusters become more conservative and particular, this worth will diminish, making more

modest qualities for this list attractive. The DB record has a critical detriment in that it comes

up short on fixed range, with a result esteem simply restricted to being non-negative, making

understanding troublesome. Moreover, observational proof proposes that while endeavoring to

choose k, this file will in general misjudge the quantity of gatherings, particularly for feebly

20

grouped information. DB record can be utilized to assess the model, where lower score

connects with a model with better partition between the groups.

0 is the least conceivable score, esteems more like zero demonstrates a superior parcel.

Through DB index, the evaluation results we obtained through k-means is 0.064. And through

k-medoids the score is 1.55. And, through agglomerative clustering we got a score of 1.37.

Figure 5.5: Results Obtained through Davies-Bouldin Index

By comparing the three algorithms performance, in this also K-means topped among other

two algorithms with a score of 0.06 which has a least possible score that indicates the better

cluster formation. Through the evaluation, we came to a conclusion that, k-means is more

suitable algorithm and produce a good result among other two algorithms performed.

CONCLUSION AND SCOPE FOR FUTURE ENHANCEMENT

The main intention of this project is to check the quality of the clusters formed through

clustering algorithms and it is not an easy problem to solve. The escalating cyber danger was

the driving force behind this effort. In this project, we analysed vulnerabilities in source code,

we used a few unsupervised clustering techniques. By learning about vulnerabilities in the

dataset, this project provides an ideal solution to organisations with the goal of enhancing

vulnerability analysis efficacy. As a result, the K-Means algorithm looks to be the most

efficient method for analysing vulnerabilities exactly. This project's future enhancements

could include a strategy for integrating more and more technologies that will be integrated

with new domains in the future to perform automated vulnerability analysis on a large-scale

and cross-architecture basis.

21

REFERENCES

 Armerding, Taylor. “What Is CVE, Its Definition and Purpose?” CSO Online, CSO, 10

July 2017, www.csoonline.com/article/3204884

 “About CWE”, Common Weakness Enumeration, September 26, 2007, Available:

http://cwe.mitre.org

 Common Vulnerabilities and Exposures. Available online: https://cve.mitre.org

 “CWE- Common Weakness Enumeration”, National Vulnerability Database, Available:

http://nvd.nist.gov/cwe.cfm

 “CVSS- A complete Guide to the Common Vulnerability Scoring System Version 2.0”,

FIRST: Forum of Incident Response and Security Teams, Available:

http://www.first.org/cvss

 Ghaffarian, S.M.; Shahriari, H.R. Software vulnerability analysis and discovery using

machine-learning and data-mining techniques: A survey. ACM Comput. Surv. 2017, 50,

56. dx.doi.org

 MITRE, Common Weakness Enumeration. https://cwe.mitre.org

 National Vulnerability Database. Available online: https://nvd.nist.gov

 “NVD Common Vulnerability Scoring System Support v2”, National Vulnerability

Database, June 20, 2007, Available: http:// nvd.nist.gov

 “NVD Data Feed and Product Integration”, National Vulnerability Database, Available:

http://nvd.nist.gov/download.cfm

 “OSVDB: The Open Source Vulnerability Database”, OSVDB, Available:

http://osvdb.org/

 S Christey and R. A. Martin, “Vulnerability Type Distributions in CVE”, Common

Weakness Enumeration- A Community-Developed Dictionary of Software Weakness

Types, May 22, 2007, Available: http://cwe.mitre.org/documents/vuln-trends

 Y. Y. Chang, P. Zavarsky, R. Ruhl and D Lindskog, “Trend Analysis of Common CVE

Vulnerability Types”, Concordia University College of Alberta, May 2011.

http://www.csoonline.com/article/3204884
http://cwe.mitre.org/
https://cve.mitre.org/
http://nvd.nist.gov/cwe.cfm
http://www.first.org/cvss
https://dx.doi.org/10.1145/3092566
https://cwe.mitre.org/
https://nvd.nist.gov/
http://nvd.nist.gov/download.cfm
http://osvdb.org/
http://cwe.mitre.org/documents/vuln-trends

22

ANNEXURE

Screenshots

Fig.1: Loading Dataset

Fig.2: Attributes Information

23

 Fig3: Heatmap

Fig.4: Count Plot for Access_Authentication

24

Fig.5: Count Plot for Access_Complexity

Fig.6: Count Plot for Access Vector

25

Fig.7: Count Plot for Impact_Availability

Fig.8: Count Plot for Impact Confidentiality

26

Fig.9: Count Plot for Impact Integrity

Fig.10: Histogram

27

Fig.11: Common Weakness Enumeration Code

Fig.12: Box Plot

Fig.13: Joint Plot

28

Fig.14: Count plot of cwe_code and cvss

Fig.15: Pair Plot of cvss

Fig.16: Dist Plot of cvss

29

Fig.17: Growth Rate of Vulnerabilities

Fig.18: Severity Distribution of Vulnerabilities

30

Fig.19: Value Distribution

31

Fig.20: Elbow Method

Fig.21: Principal Components

Fig.22: Heatmap after applying PCA

32

Fig.23: Variance of principal Components

Fig.23: 3D projection of PCA

33

Fig.24: Inertia

Fig.25: K-Medoid Clustering

34

Fig.26: Hierarchical Agglomerative Clustering

35

36

Fig.27: Results obtained through Silhouette Score

Fig.28: Results obtained through Davies Bouldin Index

Fig.29: Clusters Formed

37

Fig.30: Vulnerabilities Over Time

38

 Fig.31: Top Ten Vulnerabilities

Fig.32: Top CWE Cod

39

Fig.33: Exploited Products

	ABSTRACT
	Table 4.1: Attributes and its description
	Table 4.2: Common Vulnerability Scoring System (CVSS)
	CONCLUSION AND SCOPE FOR FUTURE ENHANCEMENT

	REFERENCES

