ISBN: 978-93-91768-62-1

ADVANCES IN MATHEMATICAL AND STATISTICAL SCIENCE

Editors

Dr. Med Ram Verma

Dr. Megha Bhamare

Dr. Sheetal Gomkar

Dr. H. S. Tomar

CONTENT

Sr. No.	Book Chapter and Author(s)	Page No
1.	FACTORIZATION OF COMPLETE GRAPH AND	1 - 11
	ITS APPLICATION	
	Chandramani Land Sakthivadivu M	
2.	INTUITIONISTIC FUZZY πeta GENERALIZED CLOSED SETS	12 - 24
	Prema S and Nandhitha K	
3.	ON INTUITIONISTIC FUZZY π_Y GENERALIZED	25 - 35
	CONTINUOUS MAPPINGS	
	Prema S and Archana A	
4.	RATIO TYPE ESTIMATORS FOR FINITE POPULATION MEAN	36 - 49
	USING KNOWN PARAMETERS OF AUXILIARY VARIABLE	
	Rajesh Tailor, Med Ram Verma, Sunil Chouhan and Ritesh Tailor	
5.	A SEPARATE RATIO-CUM-PRODUCT ESTIMATOR OF	50 - 58
	POPULATION MEAN USING AUXILIARY INFORMATION IN	
	STRATIFIED RANDOM SAMPLING	
	Rajesh Tailor, Med Ram Verma, Sunil Chouhan,	
	Ritesh Tailor and Priyanka Malviya	50 60
6.	FORECASTING OF AREA, YIELD AND PRODUCTION OF	59 – 69
	HORSE GRAM IN ODISHA	
	Balaga Divya, Abhiram Dash,	
	Akhilesh Kumar Gupta and Manoranjan Sen	70 70
7.	MHD FLOW WITH POROUS MEDIUM	70 – 72
	Hariom Singh Tomar and Pradeep Kashyap	
8.	DIMENSIONAL ANALYSIS AND SIMILITUDE	73 – 75
	Hariom Singh Tomar and Pradeep Kashyap	
9.	SEPARATE ESTIMATORS IN	76 – 84
	STRATIFIED RANDOM SAMPLING	
	Hilal A. Lone, Rajesh Tailor and Med Ram Verma	
10.	MATHEMATICAL INVENTIONS: PREHISTORIC	85 – 93
	MATHEMATICS TO MATHEMATICS IN TODAY	
	Megha Abhiman Bhamare	

(ISBN: 978-93-91768-62-1)

FACTORIZATION OF COMPLETE GRAPH AND ITS APPLICATION

Chandramani I* and Sakthivadivu M

Department of Mathematics,

Avinashilingam Institute for Home Science and Higher Education for Women,

Coimbatore - 641 043

*Corresponding author E-mail: icmpadhu@gmail.com

Abstract:

Factorization of a graph G is a set of spanning subgraphs of G that are pairwise edge disjoint. A graph is called k-factorizable if it can be represented as a union of edge-disjoint k factors. In this paper we obtain factorization of complete graph and its application.

AMS Subject Classification: 05C69

Keywords: factorization, factors

1. Introduction

Graphs are the mathematical structure which consists of vertex set V and edge set E. It is used to model pair-wise relation between objects from a certain collection. Vertices are represented as points in the plane edges are represented as the line segments connecting them. Graphs are ever-present miniature of both from nature and man-made structures.

When any two vertices are joined by more than one edge, the graph is called a multigraph. A graph without loops and with at most one edge between any two vertices is called a simple graph. Unless stated otherwise, graph is assumed to refer a simple graph. When each vertex connected by an edge to every other vertex, the graph is called a complete graph.

If two graphs G_1 and G_2 have the same vertex set, then the union $G_1 \cup G_2$ has the same vertex set and the edge set E $(G_1 \cup G_2)$ is $E(G_1) \cup E(G_2)$. If $E(G_1) \cap E(G_2) = \emptyset$ then $E(G_1) \cup E(G_2)$ $E(G_2)$ may be termed the edge-disjoint union of $E(G_1)$ and $E(G_2)$. If two graphs G_1 and G_2 have disjoint vertex sets then the union of G_1 and G_2 is $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$. Partition [7] of G into edge - disjoint sub-graphs G_1 , G_2 ... Gr such that $E(G) = E(G_1) \cup E(G_2) \cup ... \cup E(G_n)$ E(Gr) is called decomposition of G and we write $G = G_1 \oplus G_2 \oplus ... \oplus G_r$.

If every pair of vertices are joined by an edge, we say that the graph is complete and if, in addition, |V(G)| = n, we denote this graph by K_n .

There is a vast body of work on factors and factorizations and this topic has much in common with other areas of study in graph theory. For example, factorization significantly