AJ**-CLOSED SETS IN TOPOLOGICAL SPACES

P. Abitha and PL. Meenakshi

Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women,

Coimbatore

Abstract:

In this chapter, a new class of sets αJ^{**} -closed sets is initiated in topological spaces. Other than gclosed sets, analysis are performed on many stronger sets.

Key words: η^* -closed, g-closed, J*-closed, J-closed, rg-closed.

1. Introduction: Regular open sets were first described in 1937 by Stone [1], and usedthem to define the semiregularization of a topological spaces. Njastad [2] in 1968, introduced the concept of α -open sets which lies between open setsand semi-open sets. Generalized closed sets were introduced by Levine [3] in 1970. Dunham [4] has established a generalized closure using Levine's Generalized closed sets as Cl*. Annalakshmi [5] were introduced regular* open sets using Cl*. In 2018, Meenakshi. PL [6] introduced a class of new sets η^* -open [6] which is placed between the classes of δ -open set and open set. In this paper, αJ^{**} -closed sets are introduced using η^* -open sets and their properties are explored.

2. Preliminaries:

Definition 2.1: Let (Y,ζ) be a topological space. If D is a non-empty subset of (Y,ζ) then the intersection of all closed sets containing D is called **closure of D** and is denoted by Cl(D). The union of all open sets contained in D is called **interiorof D** and is denoted by int(D).

Definition 2.2: Let A be a subset of a space (Y,ζ) ,

(i) The **generalized closure** of D [4] is defined as the intersection of all g-closed

sets in Y containing D and is denoted by $Cl^*(D)$.

(ii) The **generalized interior** of D [4] is defined as the union of all g-open sets in Y containing D and is denoted by int*(D).

Definition 2.3: Let (Y,ζ) be a topological space. A subset D of space (Y,ζ) is called

♦ Regular closed set (Stone, 1937) if D=Cl(int(D))

♦ Semi-closed set (Levine, 1963) if $int(Cl(D)) \subseteq D$

♦ α -closed set (Njastad, 1965) if Cl(int(Cl(D))) ⊆ D

• π -closed set (Zaitsav, 1968) if it is the finit union of regular closed sets

♦ **pre-closed set** (Mashhour et al., 1982) if $Cl(int(D)) \subseteq D$

♦ semi pre-closed set (Andrijevic, 1986) if $int(Cl(int(D))) \subseteq D$

The complements of the above mentioned sets are called **regular open**, semi-open, α -open, π -open and pre-open, semi pre-open sets respectively.

The intersection of all regular closed (resp. semi-closed, α -closed, π -closed, pre-closed and semi preclosed) subsets of (Y, ζ) containing D is called the regular closure (resp. semi-closure, α -closure, π -closure, pre-closure and semi pre-closure) of D and is denoted by rCl(D) (resp. sCl(D), α Cl(D), π Cl(D), pCl(D) and spCl(D)).

Definition 2.4: The δ -interior (Velicko, 1968) of a subset D of Y is the union of all regular open sets of Y contained in D and is denoted by $int_{\delta}(D)$. The subset D is called δ -open if $D = int_{\delta}(D)$, i.e. a set is δ -open if it is the union of regular open sets, the complement of δ -open is called δ -closed. Alternatively, a set $D \subseteq Y$ is δ -closedif $D = \delta Cl(D)$, where $\delta Cl(D)$ is the intersection of all regular closed sets of (Y,ζ) containing D.

Definition 2.5: A subset D of a topological space (Y,ζ) is called **generalized -closed** (briefly **g-closed**)(Levine, 1970) if $Cl(D) \subseteq M$ whenever $D \subseteq M$ and Mis open in (Y,ζ) . The complement of g-closed is a **g-open set**.

Definition 2.7: [Meenakshi PL, 2019]: A subset D of a topological space (Y,ζ) is called η^* -open set if it is a union of regular*-open sets (r*-open sets). The complement of a η^* -open set is called a η^* -closed set. A subset D of a topological space (Y,ζ) is called η^* -Interior of D is the union of a η^* -open setsof Y contained in D. We denote the symbol by η^* -Int(D). The intersection of all η^* -closed sets of Y containing D is called η^* -closure is denoted by η^* -Cl(D).

Definition 2.8: A subset D of a topological space (Y,ζ) is called

1)generalized semi-closed (briefly gs-closed) (Arya et al., 1990) if $sCl(D) \subseteq M$ whenever $D \subseteq M$ and M is open in (Y,ζ) .

2)regular generalized closed (briefly **rg-closed**) (Palaniappan, et. al.,1993) if $Cl(D) \subseteq M$ whenever $D \subseteq M$ and M is regular open in (Y,ζ) .

3) regular weakly generalized closed (briefly rwg-closed) (Nagaveni, 1999) if $Cl(int(D)) \subseteq M$ whenever $D \subseteq M$ and M is regular open in (Y,ζ) .

4) **\pi-generalized closed** (briefly **\pig-closed**) (Dontchev et.al.,2000) if Cl(D) \subseteq M whenever D \subseteq M and M is π -open in (Y, ζ).

5) generalized δ -closed (briefly g δ -closed) (Dontchev, 2000) if sCl(D) \subseteq M whenever D \subseteq M and M is δ -open in (Y, ζ).

6) **\pi-generalized semi-closed** (briefly **\pigs-closed**) (Aslim et.al.,2006) if sCl(D) \subseteq M whenever D \subseteq M and M is π -open in (Y, ζ).

7) π -generalized pre-closed (briefly π gp-closed) (Park, 2006) if pCl(D) \subseteq M whenever D \subseteq M and M is π -open in (Y, ζ).

8) π -generalized α -closed (briefly $\pi g\alpha$ -closed) (Janaki, 2009) if α Cl(D) \subseteq M whenever D \subseteq M and M is π -open in (Y, ζ).

9) π -generalized semi pre-closed (briefly π gsp-closed) (Sarsak,2010) if spCl(D) \subseteq M whenever D \subseteq M and M is π -open in (Y, ζ).

10) generalized semi pre regular-closed (briefly gspr-closed) (Sarsak et.al.,2010) if $spCl(D) \subseteq M$ whenever $D \subseteq M$ and M is regular open in (Y,ζ) .

11) generalized pre regular-closed (briefly gpr-closed) (Gnanambal, 1998) if $pCl(D) \subseteq M$ whenever $D \subseteq M$ and M is regular open in (Y,ζ) .

12) **J-closed** [Meenakshi PL,2021] if Cl(D) \subseteq M whenever D \subseteq M and M is η^* -open in (Y, ζ).

13) semi generalized closed (briefly sg-closed) (Bhattacharya et.al., 1987) if $sCl(D) \subseteq M$ whenever $D \subseteq M$ and M is semi-open in (Y,ζ) .

14) **J*-closed** [Meenakshi PL,2021] if η^* -Cl(D) \subseteq M whenever D \subseteq M and M is η^* -open in (Y, ζ).

15) *a*-generalized closed (briefly *a*g-closed) (Maki et al., 1994) if $\alpha Cl(D) \subseteq M$ whenever $D \subseteq M$ and M is open in (Y,ζ) .

16) generalized semi-pre closed (briefly gsp-closed) (Dontchev, 1995) if $spCl(D) \subseteq M$ whenever $D \subseteq M$ and M is open in (Y,ζ) .

The complements of the above mentioned sets are called their respective open sets.

Remark 2.9 [6]:

(i) π -closed(open) \rightarrow regular closed(open) $\rightarrow \delta$ -closed(open) $\rightarrow \eta^*$ -closed(open) \rightarrow closed(open) \rightarrow semi-closed(open) \rightarrow semi-pre-closed(open).

(ii) π -closed(open) \rightarrow regular closed(open) \rightarrow δ -closed(open) \rightarrow η^* -closed(open) \rightarrow closed(open) \rightarrow α -closed(open).

(iii) π -closed(open) \rightarrow regular closed(open) \rightarrow δ -closed(open) \rightarrow η^* -closed(open) \rightarrow closed(open) \rightarrow g-closed(open).

(iv) π -closed(open) \rightarrow regular closed(open) $\rightarrow \delta$ -closed(open) $\rightarrow \eta^*$ -closed(open) \rightarrow closed(open) \rightarrow pre-closed(open).

Remark 2.10 [6]: For every subset D of Y,

(i) $\operatorname{spCl}(D) \subseteq \operatorname{sCl}(D) \subseteq \operatorname{Cl}(D) \subseteq \eta^* - \operatorname{Cl}(D) \subseteq \delta \operatorname{Cl}(D) \subseteq \pi \operatorname{Cl}(D) \subseteq \pi \operatorname{Cl}(D).$

(ii) $\alpha Cl(D) \subseteq Cl(D) \subseteq \eta^*-Cl(D) \subseteq \delta Cl(D) \subseteq \pi Cl(D) \subseteq \pi Cl(D).$

 $(iii) \qquad gCl(D) \subseteq Cl(D) \subseteq \eta^*\text{-}Cl(D) \subseteq \delta Cl(D) \subseteq \pi Cl(D) \subseteq \pi Cl(D).$

 $(iv) \qquad pCl(D) \subseteq Cl(D) \subseteq \eta^*\text{-}Cl(D) \subseteq \delta Cl(D) \subseteq \pi Cl(D) \subseteq \pi Cl(D).$

3. αJ**-closed sets in Topological spaces:

This section introduces the term αJ^{**} -closed sets, which refers to a new class of generalized closed sets. An analysis is done for the relationship between αJ^{**} -closed sets and different closed sets.

Definition3.1: A subset D of a topological space (Y,ζ) is said to be αJ^{**} -closed η^{*} -Cl(D) \subseteq M, M is α -open in (Y,ζ) . The class of all αJ^{**} -closed sets of (Y,ζ) is denoted by $\alpha J^{**}C(Y,\zeta)$.

Proposition3.2: Every closed set is αJ**-closed but not conversely.

Proof: Let D be a closed set and M be any α -open set containing D. Since D is closed, then Cl(D)=D, η^* -closed closed,

 $\therefore \qquad Cl(D) \subseteq \eta^*\text{-}Cl(D) \subseteq M, \text{ where } D \subseteq M, \eta^*\text{-}Cl(D) \subseteq M, D \text{ is } \alpha J^{**}\text{-}closed.$

Counter example3.3: Let $Y = \{p,q,r\}$, $\zeta = \{\phi, Y, \{p\}\}$, $\alpha O(Y, \zeta) = \{\phi, Y, \{p\}, \{p,q\}, \{p,r\}\}$, $\eta^*C(Y, \zeta) = \{Y, \{q,r\}\}$. The subset $\{r\}$ is αJ^{**} -closed but not closed.

Proposition3.4: Every η*-closed set is αJ **-closed but not conversely.

Proof: Let D be a η^* -closed set and M be any α -open set containing D. Since D is η^* -closed, η^* -Cl(D)=D. Therefore η^* -Cl(D)=D \subseteq M. This implies η^* -Cl(D) \subseteq M. Hence D is αJ^{**} -closed.

Counter example3.5: Let $Y = \{p,q,r\}$, $\zeta = \{\phi,Y,\{p,q\}\}$, $\alpha O(Y, \zeta) = \{\phi,Y,\{p,q\}\}$, $\eta^*C(Y, \zeta) = \{Y,\phi\}$. The subset $\{r\}$ is αJ^{**} -closed but not η^* -closed.

Proposition 3.6: Every δ -closed set is αJ **-closed but not conversely.

Proof: Let D be a δ -closed set and M be any α -open set containing D. Since D is δ -closed, δ Cl(D)=D. This implies δ Cl(D)=D \subseteq M, and since every δ -closed is η^* -closed. η^* -Cl(D) \subseteq

 $\delta Cl(D) \subseteq M$. Hence D is αJ^{**} -closed.

Counter example 3.7: Let $Y = \{p,q,r\}$, $\zeta = \{\phi,Y,\{p,q\}\}$, $\alpha O(Y, \zeta) = \{\phi,Y,\{p,q\}\}$, $\eta^*C(Y, \zeta) = \{Y,\phi\}$. The subset $\{q,r\}$ is αJ^{**} -closed but not δ -closed.

Proposition 3.8: Every aJ**-closed set is J*-closed but not conversely.

Proof: Let D be a αJ^{**} -closed set and M be open set containing D,

i) open set α-open set

```
ii) n*-closed
                                                                                                                               closed
                                                                             ::Cl(D) \subseteq \eta^*-Cl(D)\subseteq M, which implies that D is J*-closed set.
Counter example 3.9: Let Y = \{p, q, r, s\}, \zeta = \{Y, \phi, \{p\}, \{p,q\}\}, \eta^*Cl(D) = \{Y, \phi, \{r,s\}, \{q,r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{q,r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{q,r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{q,r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{q,r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{q,r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{q,r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{q,r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{q,r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{q,r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{q,r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{q,r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{q,r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{q,r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{q,r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{q,r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{q,r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{r,s\}, \{r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{r,s\}, \{r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{r,s\}, \{r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{r,s\}, \{r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{r,s\}, \{r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}, \{r,s\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \phi, \{r,s\}\}, \alpha O(Y, \xi) = \{\phi, Y, \phi, \{r,s\}\}, \alpha O(
\{p,q\},\{p,r\},\{p,r\},\{p,q,r\},\{p,q,s\},\{p,r,s\}\}. The subset \{p,r\} is J*-closed but not \alphaJ**-closed.
Proposition 3.10: Every αJ**-closed set is J-closed but not conversely.
Proof: Let D be a \alpha J^{**}-closed set and M be a \eta^{*}-open set containing D. Since D is \alpha J^{**}-closed,
                                      η*open
i)
                                                                                                       \alpha-open set
                                      η*-closed
ii)
                                                                                                                     closed
\therefore Cl(D) \subseteq \eta^*Cl(D) \subseteq M
From the definition of aJ**-closed set and J-closed set, we get the result, Every aJ**-closed set is J-closed.
Counter example 3.11: Let Y = \{p, q, r, s\}, \zeta = \{Y, \phi, \{p\}, \{p,q\}\}, \eta * Cl(D) = \{Y, \phi, \{r,s\}, \{q,r,s\}\}, \alpha O(Y, \zeta) = \{\phi, g, r\}, \{
Y, \{p,q\}, \{p,r\}, \{p,q,r\}, \{p,q,r\}, \{p,q,s\}, \{p,r,s\}. The subset \{p,s\} is J-closed but not \alpha J^{**}-closed.
Proposition 3.12: Every αJ**-closed set is g-closed but not conversely.
Proof: Let D be a αJ**-closed set and M be any open set containing D,
i)
                                      open set
                                                                                                                  α-open set
ii)
                                      \eta^*-closed
                                                                                                                                                         closed
\thereforeCl(D)\subseteq \eta*Cl(D)\subseteq M
From the definition of \alpha J^{**}-closed set and g-closed set, we get the result, Every \alpha J^{**}-closed set is g-closed.
Counter example 3.13: Let Y = \{p, q, r\}, \zeta = \{Y, \phi, \{p\}\}, \alpha O(Y, \zeta) = \{\phi, Y, \{p\}, \{p,q\}, \{p,r\}\}, \eta * C(Y, \zeta) = \{Y, \phi, \{p\}, \{p,q\}, \{p,r\}\}, \eta * C(Y, \zeta) = \{Y, \phi, \{p\}, \{p,q\}, \{p
\varphi, {q,r}}. The subset {p,q} is g-closed but not \alpha J^{**}-closed.
Proposition 3.14: Every αJ**-closed set is gsp-closed but not conversely.
Proof: Let D be a αJ**-closed set and M be any open set containing D,
i)
                                      Open set
                                                                                                                                                         α-open set
ii)
                                      η*-closed
                                                                                                                                                         closed
\therefore Cl(D)\subseteq \eta^*Cl(D)\subseteq M
From the definition of aJ**-closed set and gsp-closed set, we get the result, Every aJ**-closed set is gsp-closed.
\{Y, \varphi, \{r\}, \{p, r\}, \{q, r\}\}. The subset \{p, r\} is gsp-closed but not \alpha J^{**}-closed.
Proposition 3.16: Every \alpha J^{**}-closed set is \pi g -closed but not conversely.
Proof: Let D be a \alpha J^{**}-closed set and M be \pi-open set containing D.
                                                                                                                                                         α-open set
i)
                                      \pi-open set
                                      η*-closed
ii)
                                                                                                                                                         closed
\therefore Cl(D) \subseteq \eta^* Cl(D) \subseteq M
From the definition of \alpha J^{**}-closed set and \pi g-closed set, we get the result, Every \alpha J^{**}-closed set is \pi g-closed.
                                                                                                                              3.17:
                                                                                                                                                                                                                     Y = \{p,q,r,s\},\
                                                                                                                                                                                                                                                                                                   \zeta \!\!=\!\!\{Y,\!\phi,\!\{p\},\!\{r\},\!\{p,\!q\},\!\{p,\!r\},\!\{p,\!q,\!r\},\!\{p,\!r,\!s\}\},
Counter
                                                              example
                                                                                                                                                                            Let
\eta^{Cl(D)}=\{Y,\phi,\{s\},\{r,s\},\{pq,s\}\}, \alpha O(Y, \zeta)=\{Y,\phi,\{p\},\{r\},\{p,q\},\{p,q,r\},\{p,q,r\},\{p,r,s\}\} The subset \{p,r,s\} is \pi g-
closed but not aJ**-closed.
Proposition 3.18: Every αJ**-closed set is gpr-closed but not conversely.
Proof: Let D be a αJ**-closed set and M be regular open set containing D,
                                      regular open set
                                                                                                                                                        \alpha-open set
i)
ii)
                                        η*closed
                                                                                                                                                        pre-closed
\therefore pCl(D) \subseteq \eta^*Cl(D) \subseteq M
From the definition of aJ**-closed set and gpr-closed set, we get the result, Every aJ**-closed set is gpr-closed.
Counter example 3.19: Let Y = \{p,q,r\}, \zeta = \{Y,\phi,\{p\},\{q\},\{p,q\}\}, \eta^*Cl(D) = \{Y,\phi,\{r\},\{p,r\},\{q,r\}\}, \alpha O(Y,\zeta) = \{Y,\phi,\{r\},\{q,r\}\}, \alpha O(Y,\zeta) = \{Y,\phi,\{q,r\}\}, \alpha O(Y,\zeta) =
\varphi, {p}, {q}, {p,q}}. The subset {p,q} is gpr-closed but not \alpha J^{**}-closed.
Proposition 3.20: Every \alpha J^{**}-closed set is \pigp-closed but not conversely.
Proof: Let D be a \alpha J^{**}-closed set and M be \pi-open set containing D,
                                      \pi-open set
                                                                                                                                                         α-open set
i)
                                      n*-closed
ii)
                                                                                                                                                         pre-closed
\therefore pCl(D) \subseteq \eta^*Cl(D) \subseteq M
From the definition of \alpha J^{**}-closed set and \pi gp-closed set, we get the result, Every \alpha J^{**}-closed set is \pi gp-closed.
Counter
                                                              example
                                                                                                                           3.21:
                                                                                                                                                                         Let
                                                                                                                                                                                                                Y = \{p,q,r,s\},\
                                                                                                                                                                                                                                                                                            \eta*Cl(D)={Y,\phi,{s},{r,s},{p,q,s}},\zeta=
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 {Y,
\phi, \{p\}, \{r\}, \{p,q\}, \{p,r\}, \{p,q,r\}, \{p,r,s\}\}, \alpha O(Y, \zeta) = \{Y, \phi, \{p\}, \{r\}, \{p,q\}, \{p,r\}, \{p,q,r\}, \{p,r,s\}\}
The subset \{p,r,s\} is \pigp-closed but not \alpha J^{**}-closed.
Proposition 3.22: Every \alpha J^{**}-closed set is \pigsp-closed but not conversely.
Proof: Let D be a αJ**-closed set and M be regular open set containing D,
                                      regular open set
i)
                                                                                                                                                         α-open set
ii)
                                      \eta^*-closed
                                                                                                                                                         semi pre-closed
\therefore spCl(D) \subseteq \eta^*Cl(D) \subseteq M
```

From the definition of αJ^{**} -closed set and πgsp -closed set, we get the result, Every αJ^{**} -closed set is πgsp closed.

Counter example 3.23: Let $Y = \{p,q,r,s\}, \eta^*Cl(D) = \{Y,\phi,\{q,r,s\},\{r,s\},\{p,r,s\}\}, \zeta = \{Y,\phi,\{p\},\{q\},\{p,q\},\{p,q,r\},\{p,q,r\},\{p,q,r\},\{p,q,r\},\{p,q,r\},\{q,r$ $\{p,q,s\}\}, \alpha O(Y, \zeta) = \{Y, \varphi, \{p\}, \{q\}, \{p,q\}, \{p,q,r\}, \{p,q,s\}\}$ The subset $\{p,q,s\}$ is π gsp -closed but not αJ^{**} -closed. **Proposition 3.24:** Every aJ**-closed set is rg-closed but not conversely. **Proof:** Let D be a αJ**-closed set and M be regular open set containing D, regular open set α-open set i) η*closed closed ii) \therefore Cl(D) $\subseteq \eta^*$ Cl(D) \subseteq M From the definition of αJ^{**} -closed set and rg-closed set, we get the result, Every αJ^{**} -closed set is rg-closed. η *Cl(D)={Y, ϕ ,{r},{p,r},{q,r}}, \alpha O(Y, \zeta)={Y, \phi, {p}, {q}, {p,q}} The subset $\{p,q\}$ is rg-closed but not αJ^{**} -closed. **Proposition 3.26:** Every αJ^{**} -closed set is πgs -closed but not conversely. **Proof:** Let D be a αJ^{**} -closed set and M be π -open set containing D, i) π -open set α-open set ii) η^* closed semi closed \therefore sCl(D) $\subseteq \eta$ *Cl(D) $\subseteq M$ From the definition of αJ^{**} -closed set and πgs - closed set, we get the result, Every αJ^{**} -closed set is πgs -closed. Counter example 3.27: Let $Y = \{p,q,r,s\},\$ η *Cl(D)={Y, ϕ ,{r,s},{q,r,s},{p,r,s}}, $\zeta = \{Y, \phi, \{p\}, \{q\}, \{p,q\}, \{p,q,r\}, \{p,q,s\}\}, \alpha O(Y, \zeta) = \{Y, \phi, \{p\}, \{q\}, \{p,q\}, \{p,q,r\}, \{p,q,s\}\}$ The subset $\{p,q,r\}$ is π gs-closed but not αJ^{**} -closed. **Proposition 3.28:** Every αJ^{**} -closed set is $\pi g \alpha$ -closed but not conversely. **Proof:** Let D be a αJ^{**} -closed set and M be π -open set containing D, i) π -open set α-open set ii) η^* closed semi closed \therefore sCl(D) $\subseteq \eta$ *Cl(D) $\subseteq M$ From the definition of αJ^{**} -closed set and $\pi g \alpha$ - closed set, we get the result Every αJ^{**} -closed set is $\pi g \alpha$ closed. **Counter example 3.29:** Let $Y = \{p,q,r,s\}, \eta * Cl(D) = \{Y,\phi,\{s\},\{r,s\},\{p,q,s\}\}, \{p,q,s\}, \{p$ $\zeta = \{Y, \varphi, \{p\}, \{r\}, \{p,q\}, \{p,r\}, \{p,q,r\}, \{p,r,s\}\},\$ $\alpha O(Y, \zeta) = \{Y, \varphi, \{p\}, \{r\}, \{p,q\}, \{p,r\}, \{p,q,r\}, \{p,r,s\}\}$ The subset $\{p,r,s\}$ is $\pi g\alpha$ -closed but not αJ^{**} -closed. The following diagram explain about αJ^{**} -closed set is weaker than other existing g-closed sets: **Proposition 3.30:** Every αJ**-closed set is gs-closed but not conversely. **Proof:** Let D be a αJ**-closed set and M be open set containing D, open set α-open set i) η^* closed semi closed ii) \therefore sCl(D) $\subseteq \eta^*$ Cl(D) $\subseteq M$ From the definition of aJ**-closed set and gs- closed set, we get the result, Every aJ**-closed set is gs-closed. **Counter example 3.31:** Let $Y = \{p,q,r,s\}, \zeta = \{Y,\phi,\{p\},\{p,q\}\}, \eta^*Cl(D) = \{Y,\phi,\{r,s\},\{q,r,s\}\}, \alpha O(Y,\zeta) = \{\phi, Y, \phi,\{r,s\},\{q,r,s\}\}, \alpha O(Y,\zeta) = \{\phi, Y, \phi,\{r,s\},\{q,r,s\}\}, \alpha O(Y,\zeta) = \{\phi, Y, \phi,\{r,s\},\{q,r,s\},\{q$ $\{p,q\},\{p,r\},\{p,r\},\{p,q,r\},\{p,q,s\},\{p,r,s\}\}$. The subset $\{p,s\}$ is gs-closed but not αJ^{**} -closed. **Proposition 3.32:** Every aJ**-closed set is ag-closed but not conversely.

Proof: Let D be a αJ**-closed set and M be open set containing D,

open set α-open set i) a-closed

ii) η^* closed

 $\therefore \alpha Cl(D) \subseteq \eta^* Cl(D) \subseteq M$

From the definition of aJ**-closed set and ag- closed set, we get the result, Every aJ**-closed set is ag-closed. **Counter example 3.33:** Let $Y = \{p,q,r\}, \zeta = \{Y,\phi,\{p\},\{p,q\}\}, \eta^*Cl(D) = \{Y,\phi,\{q,r\}\}, \alpha O(Y, \zeta) = \{Y, \phi\}, \varphi \in \{P, P\}, \{P, Q\}, \{P, Q\}$, $\{p\}$, $\{p,r\}$, $\{p,q\}$. The subset $\{p,r\}$ is ag-closed but not aJ**-closed.

Proposition 3.34: Every aJ**-closed set is rwg-closed but not conversely.

Proof: Let D be a αJ**-closed set and M be regular open set containing D,

regular open set α-open set i)

 \therefore Cl(D) $\subseteq \eta^*$ Cl(D) $\subseteq M$

 $Cl (intD) \subseteq \eta^*Cl (int D) \subseteq M$

Cl (intD)⊆ M

From the definition of αJ^{**} -closed set and rwg- closed set, we get the result, Every αJ^{**} -closed set is rwgclosed.

Counter example 3.35: Let $Y = \{p,q,r\}, \zeta = \{Y,\phi,\{p\},\{p,q\},\{q\}\},$

 $\eta^*Cl(D) = \{Y, \varphi, \{r\}, \{p, r\}, \{q, r\}\}, \alpha O(Y, \zeta) = \{Y, \varphi, \{p\}, \{q\}, \{p, q\}\}$

The subset $\{p,q\}$ is rwg-closed but not αJ^{**} -closed.

Proposition 3.36: Every αJ**-closed set is gspr-closed but not conversely.

Proof: Let D be a αJ**-closed set and M be regular open set containing D,

 α -open set i) regular open set

 η^* closed semi pre-closed ii)

 \therefore spCl(D) $\subseteq \eta^*$ Cl(D) $\subseteq M$

From the definition of aJ**-closed set and gspr- closed set, we get the result, Every aJ**-closed set is gsprclosed.

Counter example 3.37: η *Cl(D)={Y, ϕ ,{r,s},{q,r,s},{p,r,s}}, Let $Y = \{p,q,r,s\},\$ $\zeta = \{Y, \phi, \{p\}, \{q\}, \{p,q\}, \{p,q,r\}, \{p,q,s\}\}, \ \alpha O(Y, \zeta) = \{Y, \phi, \{p\}, \{q\}, \{p,q\}, \{p,q,r\}, \{p,q,s\}\}$ The subset $\{p,q,s\}$ is gspr-closed but not αJ^{**} -closed.

Proposition 3.38: Every αJ^{**} -closed set is $g\delta$ -closed but not conversely.

Proof: Let D be a αJ^{**} -closed set and M be δ -open set containing D,

- i) δ-open set α -open set
- closed ii) η^* closed

 \therefore Cl(D) $\subseteq \eta^*$ Cl(D) $\subseteq M$

From the definition of αJ^{**} -closed set and $g\delta$ - closed set, we get the result, Every αJ^{**} -closed set is $g\delta$ -closed.

Counter example 3.39: $Y = \{p,q,r,s\}, \eta^*Cl(D) = \{Y,\phi,\{r,s\},\{q,r,s\},\{p,r,s\}\}, \zeta = \{Y,\phi,\{p\}, \{q\},\{p,q\}, \{p,q,r\}, \{p,q,$ $\{p,q,s\}\}, \alpha O(Y, \zeta) = \{Y, \varphi, \{p\}, \{q\}, \{p,q\}, \{p,q,r\}, \{p,q,s\}\}$

The subset $\{p,q,r\}$ is g δ -closed but not αJ^{**} -closed.

References:

- 1. Stone, M. (1937), Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 374-481.
- 2. Njastad, O. (1965) On some classes of nearly open sets, Pacific J. Mathematics., 15(3), 961-970.
- Sarsak, M.S. and Rajesh, N. (2010) π -generalized semi-pre closed sets, International Mathematical 3. Forum, 5(12), 573-578.
- 4. Park, J. H. (2006) On πgp-closed sets in topological spaces, Indian J. Pure Appl. Math., 112(4), 257-283.
- 5. Levine, N. (1970) Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2), 89-96.
- 6. Janaki, C. (2009) Studies on $\pi g\alpha$ -closed sets in topology, Ph.D. Thesis, Bharathiar University, Coimbatore, India.
- 7. Ekici, E. and Baker, C. W. (2007), On πg-closed sets and continuity, Kochi. J. of Mathematics, 2, 35-42
- 8. Bhattacharya, P. and Lahiri, B.K. (1987) Semi-generalized closed sets in topology, Indian J. Math., 29(3), 375-382.
- 9. Annalakshmi, M. and Pious Misser, S. (2016) Between Regular open sets and open sets, IJMA, 7, 128-133.
- 10. Navalagi, G., Chandrashekharappa, A. S. and Gurushantanavar, S. V. (2010) On gspr-closed sets in topological spaces, International journal of Mathematics and Computer Applications, 2(1-2), 51-58.
- 11. MeenakshiPL. Characterization of J, J*, J**-closed sets in Topological spaces; (2021), 245-64.
- 12. Aslim, G. CaksuGuler, A. and Noiri, T. (2006) On π gs-closed sets in topological spaces, Acta. Math. Hungar. 112(4), 275-283.
- 13. Veera Kumar, M.K.R.S. (2006), Between g*-closed sets and g-closed sets, Antarctica J. Math., Vol 3(1), 48-65.
- 14. Zaitsav, V. (1968) On certain classes of topological spaces and their biocompactifications, Dokl. Akad. Nauk SSSR, 178, 778-779.
- 15. Gnanambal Y. On generalised pre-regular closed in topologicalspaces. Indian J Pure Appl Math. 1997; 28(3):351-60.
- 16. Dontchev, J. and Noiri, T. (2000) Quasi-normal spaces and πg-closed sets, Acta Math. Hungar, 89(3), 211-219.
- 17. Missier P, S, Annalakshmi M. Between regular open sets and open sets, IJMA7. (2016), 5, 128-33.