δ J-CONTINUOUS FUNCTIONS

P. Charumathi, PL. Meenakshi

PG scholar, Professor, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore-641043,India.

E-mail: 21pma006@avinuty.ac.in.

Abstract:

Different kinds of δJ -continuous function are introduced.

Keywords: $\delta J\text{-}$ continuous, Strongly $\delta J\text{-}$ continuous, super continuous, totally-continuous .

Introduction

In 1968, Velico proposed δ -open sets which are stronger than open sets. Levine has brought generalized closed sets in 1970. Later in 2016, Meenakshi P L has introduced a new sets namely η^* open sets, a union of r*open sets, which is placed between δ open set and open set. Then a new class of sets namely J-closed sets was introducing η^* open sets in topological spaces. This class of J-closed sets is placed between that of generalized closed(g-closed) sets and generalized δ -closed sets. In the year 2020,Meenakshi P L has introduced the concept of J-continuous Functions. In 2022, Vethavarna K P has introduced δJ closed sets. In this chapter , δJ continuous functions, different kinds of δJ -continuous functions namely Quasi δJ –continuous functions, Totally δJ –continuous functions, Strongly δJ -continuous functions and Contra δJ –continuous functions are introduced. In section 1, a topological space is represented by (g, τ).

1.Preliminaries

Definition 1.1: Let (g,τ) be a topological space. If D is a non-empty subset of (g,τ) then the intersection of all closed sets containing D is called closure of D and is denoted by Cl(D).

The union of all open sets contained in D is called interior of D and is denoted by int(D).

Definition 1.2: Let (g,τ) be a topological space. A subset D of space is called

Regular closed set (Stone, 1937) if D=Cl(int(D))

Semi-closed set (Levine, 1963) if $int(Cl(D)) \subseteq D$

 α -closed set (Njastad, 1965) if Cl(int(Cl(D))) ⊆ D

 π -closed set (Zaitsav, 1968) if it is the finit union of regular closed sets

Pre-closed set (Mashhour et al., 1982) if $Cl(int(D)) \subseteq D$

Semi pre-closed set (Andrijevic, 1986) if $int(Cl(int(D))) \subseteq D$

The complements of the above mentioned sets are called **regular open**,

semi-open, α -open, π -open and pre-open, semi pre-open sets respectively.

The intersection of all **regular closed** (resp. **semi-closed**, α-closed,

 π -closed, pre-closed and semi pre-closed) subsets of (g,τ) containing D is

called the regular closure (resp. Semi-closure, α -closure, π -closure, preclosure

and semi pre-closure) of D and is denoted by rCl(D) (resp. sCl(D),

 α Cl(D), π Cl(D), pCl(D) and spCl(D)).

Definition 1.3: The δ -interior (Velicko, 1968) of a subset D of Y is the union of all regular open sets of Y contained in D and is denoted by int $\delta(D)$. The subset D is called δ -open if $D = int\delta(D)$, i.e. a set is δ -open if it is the union of regular open sets, the complement of δ -open is called δ -closed.

Alternatively, a set $D \subseteq Y$ is δ -closed if $D = \delta Cl(D)$, where $\delta Cl(D)$ is the

intersection of all regular closed sets of (g,τ) containing D.

Definition 1.4: A subset D of a topological space (g,τ) is called **generalized**

Closed (briefly **g-closed**) (Levine, 1970) if $Cl(D) \subseteq M$ whenever $D \subseteq M$ and M

is open in (g,τ) . The complement of g-closed is a **g-open set**.

Definition 1.5 [Pious Annalakshmi, 2016]: Let (Y,ζ) be a topological space. A subset D of (Y,ζ) is called **regular*-open (or r*-open)** if D=int(Cl*(D)). The complement of regular*-open set is called **regular*-closed set.** The union of all regular*-open sets of Y contained in D is called **regular*-interior** and is denoted by r*int(D). The intersection of all regular*-closed sets of Y containing D is called **regular*-closure** is denoted by r*Cl(D).

Definition 1.6 [Meenakshi PL, 2019): A subset D of a topological space (g,τ) is called **η*-open set** if it is a union of regular*-open sets (r*-open sets). The complement of a **η*-open set** is called a **η*-closed set**. A subset D of a topological space (g,τ) is called **η*-Interior** of D is the union of a **η*-open sets** of Y contained in D. We denote the symbol by **η*-Int**(D). The intersection of all

 η^* -closed sets of Y containing D is called η^* -closure is denoted by η^* -Cl(D).

Definition 1.7: A subset D of a topological space (g,τ) is called 1) generalized semi-closed (briefly gs-closed) (Arya et al., 1990) if $sCl(D) \subseteq M$ whenever $D \subseteq M$ and M is open in (g,τ) . 2) regular generalized closed (briefly rg-closed) (Palaniappan, et. al.,1993) if Cl(D) \subseteq M whenever D \subseteq M and M is regular open in (g, τ). 3) regular weakly generalized closed (briefly rwg-closed) (Nagaveni, 1999) if Cl(int(D)) \subseteq M whenever D \subseteq M and M is regular open in (g, τ). 4) π -generalized closed (briefly π g-closed) (Dontchev et.al.,2000) if $Cl(D) \subseteq M$ whenever $D \subseteq M$ and M is π -open in (g, τ) . 5) generalized δ -closed (briefly g δ -closed) (Dontchev, 2000) if $sCl(D) \subseteq M$ whenever $D \subseteq M$ and M is δ -open in (g, τ) . 6) π -generalized semi-closed (briefly π gs-closed) (Aslim et.al.,2006) if $sCl(D) \subseteq M$ whenever $D \subseteq M$ and M is π -open in (g, τ) . 7) π -generalized pre-closed (briefly π gp-closed) (Park, 2006) if $pCl(D) \subseteq M$ whenever $D \subseteq M$ and M is π -open in (g, τ) . 8) π -generalized α -closed (briefly π g α -closed) (Janaki, 2009) if $\alpha Cl(D) \subseteq M$ whenever $D \subseteq M$ and M is π -open in (g, τ) . 9) π -generalized semi pre-closed (briefly π gsp-closed) (Sarsak,2010) if $spCl(D) \subseteq M$ whenever $D \subseteq M$ and M is π -open in (g, τ) . 10) generalized semi pre regular-closed (briefly gspr-closed) (Sarsak et.al.,2010) if spCl(D) \subseteq M whenever D \subseteq M and M is regular open in (g, τ). 11) generalized pre regular-closed (briefly gpr-closed) (Gnanambal, 1998) if pCl(D) \subseteq M whenever D \subseteq M and M is regular open in (g, τ). 12) **J-closed** [Meenakshi PL,2021] if $Cl(D) \subseteq M$ whenever $D \subseteq M$ and M is η^* -open in (g, τ). 13) δ generalized -closed (briefly δ g-closed) (Dontchev, 1996) if $\delta Cl(D) \subseteq M$ whenever $D \subseteq M$ and M is open in (g, τ) . 14) δ generalized star -closed (briefly δg^* -closed) (Sudha, 2014) if $\delta Cl(D) \subseteq M$ whenever $D \subseteq M$ and M is g-open in (g, τ) . 15) **g*-closed** (Veerakumar, 2000) if $Cl(D) \subseteq M$ whenever $D \subseteq M$ and M is g-open in (g, τ) . 16) $\hat{\mathbf{g}}$ -closed (Veerakumar, 2003) if Cl(D) \subseteq M whenever D \subseteq M and M is semi-open in (g, τ) . 17) **#gs -closed** (Veerakumar, 2005) if $sCl(D) \subseteq M$ whenever $D \subseteq M$ and M is *g-open in (g, τ) . 18) ***g-closed** (Veerakumar, 2006) if $Cl(D) \subseteq M$ whenever $D \subseteq M$ and M is \hat{g} -open in (g, τ) . 19) **g*s-closed** (Pushpalatha et al., 2000) if $Cl(D) \subseteq M$ whenever $D \subseteq M$ and M is gs-open in (g, τ) . 20) $\delta g \ddagger$ -closed (Dontchev, 2000) if $\delta Cl(D) \subseteq M$ whenever $D \subseteq M$ and M is δ-open in (g, τ) . 21) **J*-closed** [Meenakshi PL,2021] if η^* -Cl(D) \subseteq M whenever D \subseteq M and M is η^* -open in (g, τ). 22) **J****-closed [Meenakshi PL,2021] if η *-Cl(D) \subseteq M whenever D \subseteq M and M is η^* -open in (g, τ). The complements of the above mentioned sets are called their respective open sets. Remark 1.8 : (i) π -closed(open) regular closed(open) δ -closed(open) η^* -closed(open) closed(open) semi-closed(open) semipreclosed(open). (ii) π -closed(open) regular closed(open) δ -closed(open) η^* -closed(open) closed(open) closed(open) α closed(open). (iii) π -closed(open) regular closed(open) δ -closed(open) η^* -closed(open) closed(open) g-closed(open). (iv) π -closed(open) regular closed(open) δ -closed(open) η^* -

closed(open) closed(open) pre-closed(open).

Definition 1.9. Afunction f: $g \rightarrow h$ is said to be

- ***** J-Continuous (Levine, 1970) if for every closed set U in (h,σ) , $f^{-1}(U)$ is a closed set in (g,τ) .
- ***** strongly J- continuous (Levine, 1960) if the inverse image of every subset of (h, σ) is clopen in (g, τ) .

- ★ δ -continuous (Noiri,1980) if for every δ-closed set U of (h, σ), f¹(U) is a δ-closed set of (g, τ).
- Totally J- continuous (Jain, 1980) if the inverse image of every open set of (h, σ) is δ clopen in (g, τ)
- Super J- continuous (Munshi, 1982) if for every closed set U of (h, σ) , $f^{-1}(U)$ is a δ closed set of (g, τ) .
- **g-continuous**(Balachandran et al.,)if for every closed set U in (h, σ) , $f^{-1}(U)$ is a g closed set in (g, τ)
- *rg-continuous*(Palaniappan,et.al.,)if $f^{1}(U)$ is a *rg* closed set in (g, τ) for every closed set U in (h, σ)
- **secontinuous**(Devi et.al., 1993)if $f^{-1}(U)$ is a gs closed set in (g, τ) for every closed set U in (h, σ)
- **Contra J-continuous**(Dontchev, 1996) if the inverse image of every closed set of (h, σ) is δ open set $in(g, \tau)$
- δ g-continuous(Dontchev,1996) if f¹(U) is a δ g closed set in (g, τ) for every closed set U in (h, σ)
- *** gpr-continuous**(Gnanambal,1997)if $f^{1}(U)$ is a gpr closed set in (g, τ) for every closed set U in (h, σ)
- *** rwg-continuous**(Nagaveni, 1999) if $f^{1}(U)$ is a rwg closed set in (g, τ) for every closed set U in (h, σ)
- $\mathbf{g}\delta$ -continuous(Dontchev,2000) $iff^{1}(\mathbf{U})$ is a $\mathbf{g}\delta$ closed set in (\mathbf{g}, τ) for every closed set U in (\mathbf{h}, σ)
- **\hat{g}-continuous**(Veerakumar,2003) if $f^{-1}(U)$ is a \hat{g} open set in (g, τ) for every open set U in (h, σ)
- π gp-continuous(Park,2004) if f⁻¹(U) is a π gp closed set in (g, τ) for every closed set U in (h, σ)
- * π gs-continuous(Aslim,2006)if $f^{1}(U)$ is a π gs closed set in (g, τ) for every closed set U in (h, σ)
- * $\pi g\alpha$ -continuous(Park,2004) if $f^{-1}(U)$ is a $\pi g\alpha$ closed set in (g, τ) for every closed set U in (h, σ)
- * π g-continuous(Ekici et.al.,2007) if f⁻¹(U) is a π g closed set in (g, τ) for every closed set U in (h, σ)
- * π **gp-continuous**(Park,2004) if $f^{-1}(U)$ is a π gp closed set in (g, τ) for every closed set U in (h, σ)
- * π gsp-continuous(Park,2004) if f⁻¹(U) is a π gsp closed set in (g, τ) for every closed set U in (h, σ)
- ***** gspr-continuous(Devi et.al., 1993)if $f^{-1}(U)$ is a gspr closed set in (g, τ) for every closed set U in (h, σ)
- g*s-continuous(Pushpalatha et.al.,)if $f^{1}(U)$ is a g*s closed set in (g, τ) for every closed set U in (h, σ) .
- δg^* -continuous(Pushpalatha et.al.,)if $f^1(U)$ is a δg^* closed set in (g, τ) for every closed set U in (h, σ)

2.2.δJ -continuous Function in Topological Spaces

2.2. δ **J**-continuous Function

The properties of δJ -continuous functions in topological spaces are introduced and some of their related properties are analysed here.

DEFINITION2.2.1 : A function $f(g,\tau) \rightarrow (h,\sigma)$ is said to be δJ –continuous function if the inverse image of every closed set in (h,σ) is δJ closed in (g,τ) .

Example 2.2.2 : Let f: $(g,\tau) \rightarrow (h,\sigma)$ be the many one into function defined by $f(a)=\{b\}, f(b)=\{c\}, f(c)=\{a\}$. Consider $g=h=\{a,b,c\}$ with $\tau=\{g,\emptyset,\{a\}\}$ and $\sigma=\{h,\emptyset,\{a\},\{b,c\}\}, \tau^c=\{g,\emptyset,\{b,c\}\}, \sigma^c=\{h,\emptyset,\{b,c\},\{a\}\}$. Then f is δJ - Continuous as $\delta JC(g,\tau)=\{g,\emptyset,\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\}\}$.

Proposition 2.2.3: A δJ -continuous function $f:(g,\tau) \rightarrow (h,\sigma)$ is a J- continuous function but the converse is not true.

Proof Given f: $(g,\tau) \rightarrow (h,\sigma)$ is a δJ –continuous function. Let U be any closed set in (h,σ) . Since f is a δJ continuous, f¹ inverse of (U) is δJ closed in (g,τ) . Then f¹(U) is J closed in (g,τ) . Hence f is J-continuous.

Counter Example 2.2.4: Let $f:(g,\tau) \rightarrow (h,\sigma)$ be the function defined by $f(a)=\{a\}, f(b)=\{c\}, f(c)=\{b\}$ Let $g=h=\{a,b,c,\}$ with $\tau=\{g,\emptyset,\{a\},\{b\},\{a,b\}\}$ and $\sigma=\{h,\emptyset,\{a\},\{b,c\}\}$. Here $\tau^c =\{g,\emptyset,\{b,c\},\{a,c\},\{c\}\}, \sigma^c =\{h,\emptyset,\{a\},\{b,c\}\}$ and $\delta\delta J(g,\tau)=\{g,\emptyset,\{c\},\{b,c\},\{a,c\}\}$. Then f is J- continuous as JC=P(g) but not δJ continuous. Because for the closed sets $\{a\}$ in (h,σ) the inverse image are not δJ closed in (g,τ) .

Proposition 2.2.5: A δ J-continuous function f: $(g, \tau) \rightarrow (h, \sigma)$ is a gs -continuous function but the converse is not true.

Proof Given $f:(g,\tau) \to (h,\sigma)$ is a δJ -continuous function. Let U be an γ closed set in (h,σ) . Since f is a δJ continuous, $f^{-1}(U)$ is δJ closed in (g,τ) . Then $f^{-1}(U)$ is βS closed in (g,τ) . Hence f is gs- continuous.

CounterExample2.2.6: let $f(g, \tau) \rightarrow (h, \sigma)$ be the function defined by $f(a)=\{c\}, f(b)=\{a\}, f(c)=\{b\}$ then f¹(a)={b}, f¹(b)={c}, f¹(c)={a}. Consider g=h={a,b,c} with $\tau = \{g, \phi, \{a\}, \{b,c\}\}$ and $\sigma = \{h, \phi, \{a,b\}\}$. Here $\sigma^{c}=\{h, \phi, \{c\}\}, \delta c$ (h, σ)={h, $\phi, \{a\}, \{b,c\}\}$ and δJ closed(g, τ)={g, $\phi, \{b\}, \{c\}, \{a,c\}\}$. Then f is gs-continuous as $gs(g, \tau)=P(g)$ but not δJ -continuous. Because for the closed set {c} in(h, $\sigma), f^{1}(c)=\{a\}$ is not a δJ closed in(g, τ).

Proposition 2.2.7: A δ J- continuous function $f:((g, \tau) \rightarrow (h, \sigma)$ is a π g-continuous function but the converse is not true.

Proof Given $f:(g,\tau) \to (h,\sigma)$ is a δ J-continuous function. Let U be any closed set in (h,σ) . Since f is a δ J-continuous, $f^{-1}(U)$ is δ J closed in (g,τ) . Then $f^{-1}(U)$ is πg closed in (g,τ) . Hence f is πg – continuous.

CounterExample 2.2.8: Let $f:(g, \tau) \rightarrow (h, \sigma)$ be the function defined by $f(a)=\{b\}, f(b)=\{c\}, f(c)=\{a\}$ then f ${}^{1}(a)=\{c\}, f^{-1}(b)=\{a\}, f^{-1}(c)=\{b\}$. Consider $g=h=\{a,b,c\}$ with $\tau=\{g,\emptyset,\{a\},\{b\},\{a,b\},\{a,c\}\}$ and $\sigma=\{h, ,\emptyset,\{a,b\}\}$. Here $\tau^{c}=\{g, ,\emptyset,\{b,c\},\{a,c\},\{c\},\{c\},\{b\}\}, \sigma^{c}=\{h, ,\emptyset,\{c\},\delta c$ $(h, \sigma)=\{h, ,\emptyset,\{b\},\{a,c\}\}$ and $\delta J(g, \tau)=\{g, ,\emptyset\}$. Then f is πg - continuous as $\pi g(g, \tau)=P(g)$ but not δJ - continuous. Because for the closed set $\{b\}$ in (h, σ) f⁻¹(b)= $\{a\}$ is not δJ closed in (g, τ) .

Proposition 3.2.9: A δ J-continuous function $f:(g, \tau) \rightarrow (h, \sigma)$ is a πgs – continuous function but the converse is not true.

Proof Given $f:(g,\tau) \to (h,\sigma)$ is a δJ -continuous function. Let U be any closed set in (h,σ) . Since f is a δJ -continuous, $f^{-1}(U)$ is δJ closed in (\mathcal{G}, τ) . Then $f^{-1}(U)$ is π gs closed in (g, τ) . Hence f is π gs -continuous.

Counter Example 2.2.10: Let $f:(g,\tau) \to (h,\sigma)$ be the function defined by $f(a)=\{a\}, f(b)=\{c\}, f(c)=\{b\}$ then $f^{-1}(a)=\{a\}, f^{-1}(b)=\{c\}, f^{-1}(c)=\{b\}$. Consider $g=h=\{a,b,c\}$ with $\tau=\{g,\emptyset,\{a\},\{b\},\{a,b\}\}$ and $\sigma=\{h, ,\emptyset,\{a,b\}\}$. Then $\tau^{c}=\{g, ,\emptyset,\{b,c\},\{a,c\},\{c\}\}, \sigma^{c}=\{h, ,\emptyset,\{c\}\}, \delta c$ $(h,\sigma)=\{h, ,\emptyset,\{c\},\{a,c\},\{b,c\}\}$ and $\delta J(g, \tau)=\{g,\emptyset,\{c\},\{a,c\},\{b,c\}\}$. Then f is πgs -continuous as $\pi gs(g, \tau)=\{g,\emptyset,\{a\},\{b\},\{c\},\{a,c\},\{b,c\}\}$ but not δJ -continuous. Because for the closed set $\{c\}$ in (h,σ) $f^{-1}(c)=\{b\}$ is not δJ closed in (g, τ)

Preposition 2.2.11: A δ J-continuous function $f:(g, \tau) \rightarrow (h, \sigma)$ is a gspr-continuous function but the converse is not true.

Proof Given $f:(g,\tau) \to (h,\sigma)$ is a δ J-continuous function. Let U be any closed set in (h,σ) . Since f is a δ J-continuous, $f^{1}(U)$ is δ J closed in (σ, τ) . Then $f^{1}(U)$ is gspr closed in (g, τ) . Hence f is gspr-continuous.

Counter Example 2.2.12: Let $f:(g,\tau) \rightarrow (h,\sigma)$ be the identity function defined by $f(a)=\{a\}, f(b)=\{b\}, f(c)=\{c\}$ then $f^{1}(a)=\{a\}, f^{1}(b)=\{b\}, f^{1}(c)=\{c\}$. Consider $g=h=\{a,b,c\}$ with $\tau=\{g,\emptyset,\{a\},\{b,c\}\}$ and $\sigma=\{h,\emptyset,\{a,b\}\}$. Then $\tau^{c}=\{g, , \emptyset,\{a\},\{b,c\}\}, \sigma^{c}=\{h,\emptyset,\{c\}\}, \delta c$ $(h,\sigma)=\{h,\emptyset,\{a\},\{b,c\}\}$ and $\delta J(g,\tau)=\{g, \emptyset,\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\}\}$. Then f is gspr -continuous as gspr(g, τ)=P(g) but not δJ - continuous. Because for the closed set $\{a\}$ in (h,σ) f¹(a)= $\{a\}$ is not δJ closed in (g, τ) .

Proposition 2.2.13: A δ J-continuous function $f:(g,\tau) \rightarrow (h,\sigma)$ is a $g\delta$ -continuous function but the converse is not true.

Proof Given $f:(g,\tau) \to (h,\sigma)$ is a δ J-continuous function. Let U be any closed set in (h,σ) . Since f is a δ J-continuous, $f^{-1}(U)$ is δ J closed in (g,τ) . Then $f^{-1}(U)$ is $g\delta$ closed in (g,τ) . Hence f is $g\delta$ -continuous.

Counter Example 2.2.14:Let $f:(g,\tau) \rightarrow (h,\sigma)$ be the identity function defined by $f(a)=\{a\}, f(b)=\{b\}, f(c)=\{c\}$ then $f^{1}(a)=\{a\}, f^{1}(b)=\{b\}, f^{1}(c)=\{c\}$. Consider $g=h=\{a,b,c\}$ with $\tau =\{g,\emptyset,\{a\},\{b\},\{a,c\},\{a,b\}\}$ and $\sigma =\{h,\emptyset,\{a,b\}\}$. Then $\tau^{c}=\{g, \emptyset,\{b,c\},\{a,c\},\{b\},\{c\}\}, \sigma^{c}=\{h,\emptyset,\{c\}\}, \delta c$ $(h,\sigma)=\{h, \emptyset,\{b\},\{a,c\}\}$ and $\delta J(g, \tau)=\{g,\emptyset\}$. Then f is $g\delta$ -continuous as $g\delta$ $(g, \tau)=P(g)$ but not δJ -continuous. Because for the closed set $\{b\}$ in $(h,\sigma) f^{1}(b)=\{b\}$ is not δJ closed in (g, τ) .

Theorem 2.2.15: A δ **J** - function f:(g, τ) \rightarrow (*h*, σ) is a

- 1. π ga continuous function
- 2. *gpr* -continuous function
- 3. *rwg* -continuous function
- 4. *aspr* -continuous function
- 5. π g-continuous function
- 6. π gp-continuous function
- 7. π gs-continuous function

Proof Obvious

Remark 2.2.16 The converse of the above theorem 2.2.14 is not true. It can be seen from the following counter example.

Counter Example 2.2.17 In the above **counterexample2.2.14** π ga (g, τ)=gpr(g, τ)=rwg(g, τ)=gspr(g, τ)= π gg(g, τ)= π gg(g, τ)= π gg(g, τ)= π gs(g, τ)=P(g).Then f is π ga-continuous, gpr-continuous, gspr-continuous, π g-continuous, π gs-continuous but not δ J-continuous. Because for the closed set {b} in (h, σ), f¹(b)={b} is not δ J closed in(g, τ).

Theorem 2.2.18 A function $f:(g,\tau) \rightarrow (h,\sigma)$ is a δJ -continuous if and only if the inverse image of every closed set in (h,σ) is δJ -open in (g,τ) .

Proof Necessity Let $f:(g, \tau) \to (h, \sigma)$ be δJ continuous and U be an γ open set in (h, σ) . Then h-U is closed in (h, σ) . Since $f \delta J$ continuous, $f^{1}(h-U)=h-f^{1}(U)$ is δJ closed in (g, τ) and hence $f^{1}(U)$ is δJ open in (g, τ) .

Sufficiency Assume that $f^{1}(V)$ is δJ open in (g, τ) for each open set V in (h, σ) .Let V be a δ closed set in (h, σ) .Then h-V is δ open in (h, σ) .By assumption $f^{1}(h-V)=h-f^{1}(V)$ is δJ open in (g, τ) which implies that $f^{1}(V)$ is δJ closed in (g, τ) .Hence f is δJ -continuous.

Proposition 2.2.19 A super continuous function $f:(g,\tau) \rightarrow (h,\sigma)$ is a δJ - continuous function but the converse is not true.

Proof Given $f:(g,\tau) \to (h,\sigma)$ is a super continuous function. Let U be any closed set in (h, σ) . Since f is a super continuous function $f^{1}(U)$ is δ closed in (g,τ) . Then $f^{1}(U)$ is a δf closed in (g,τ) . Hence f is δJ -continuous.

Counter Example 2.2.20 Let $f:(g, \tau) \rightarrow (h, \sigma)$ be the function defined by $f(a)=\{b\}, f(b)=\{c\}, f(c)=\{b\}$ then $f^{-1}(c)=\{b\}, f^{-1}(b)=\{a,c\}$. Consider $g=h=\{a,b,c\}$ with $\tau=\{g,\emptyset,\{a\},\{a,b\}\}$ and $\sigma=\{h,\emptyset,\{a,b\}\}$. Here $\tau^{c}=\{g,\emptyset,\{c\},\{b,c\}\}, \sigma^{c}=\{h,\emptyset,\{c\}\}, \delta c$ $(h,\sigma)=\{h, , , , , , , , \}$ and δJ $(g, \tau)=\{g,\emptyset,\{b\},\{c\},\{a,c\}\}$. Then f is δJ continuous as δC $(g, \tau)=\{g, , , , \}$ but not super continuous. Because for the closed set $\{c\}$ in $(h, \sigma), f^{-1}(c)=\{b\}$ is not δ closed in (g, τ)

Remark 2.2.21 From the above discussions, we have the following diagram

Proposition 2.2.22 A totally continuous function $f:(g,\tau)\to(h,\sigma)$ is a δJ - continuous function but the converse is not true.

Proof Given $f:(g, \tau) \to (h, \sigma)$ is a totally continuous function. Let U be any open set in (h, σ) . Since f is a totally continuous, $f^{1}(U)$ is clopen in (g, τ) . We know that "Every clopen is δJ open set". Then $f^{1}(U)$ is δJ open in (g, τ) . Hence f is δJ - continuous.

References:

1.Aslim, G., Caksu Guler, A . and Noiri, T. (2006) On \Box gs-closed sets in topological spaces, Acta. Math. Hungar., 112(4), 275-283.

2.Baker, C.W., (1996) On preserving g-closed sets, Kyungpook Math.J., 36, 195-199

3.Balachandran, K., Sundaram, P. And Maki, H. (1990) On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 12, 5-13.

4.Caldas, M., (1993) On g-closed sets and g-continuous Mappings, Kyungpook Math. J., 33(2), 205-209.

5.Chawalit,B.,(2003a) Generalized continuous function from any topological space into product,Naresuan Univ.J.,11(2),93-98.

6.Dontchev, J. And Noiri, T.(2000) Quasi-normal spaces and \Box g-closed sets, Acta Math. Hungar, 89(3), 211-219.

7.Donatchev, J., Arokiarani, I, and Krishnan Balachandran (2000) On generalized weakly Hausdorff spaces, Topology Atlas.

8.Ekici,E. And Baker,C.W.(2007),On
g-closed sets and continuity,Kochi.J.of Mathematics,2,35-42.

9.Janaki, C. (2009) Studies on $\Box g \Box$ -closed sets in topology, Ph.D. Thesis, Bharathiar University, Coimbatore, India.

10.Janaki.C. and Jeyanthi.V.(2013) On Soft \Box gr-Closed sets in Soft Topological Spaces, Journal of Advances inMathematics, Vol 4, No.3, 478-484.

11.Levine, N.(1960) Strong continuity in topological spaces, Amer. Math. Monthly, 67, 269-275.

12.Munshi, B.M. and Bassan, D.S.(1982) Super-Continuous Mappings, Indian J. Pure Appl.Math., 13(2), 229-236.

13.Meenakshi,PL. and Sivakamasundari.K., J-closed sets in topological spaces, JETIR, Vol6(5) (2019), 193-201. 14.Meenakshi,PL. and Sivakamasundari.K., J-open sets in topological spaces, Research Highlights

(2020), Avinashilingam Institute for home science and higher education for women, Coimbatore.