J*P-CONTINUOUS FUNCTIONS IN TOPOLOGICAL SPACES

Devayani J, Meenakshi PL

PG scholar, professor, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for women, Coimbatore-641043, India.

E-mail:21pma008@avinuty.ac.in

Abstract:

The aim of this paper is to introduce some new class of functions called J*P-continuous functions by using J*P-closed sets. The properties of J*P-continuous functions are discussed. Different kinds of continuous functions are introduced and characterized. Their interrelating properties are also obtained.

Keywords: J-continuous, gs-continuous, J*P-closed, g-continuous, strongly continuous.

Introduction:

Stone 19 (1937) defined the notion of regular open sets in his novel paper which related the theory of Boolean rings to General Topology. Mashhour et al 12 (1982) first studied the notion of pre open sets in topological spaces and obtained various properties. Levine 10 (1970) initiated the study of generalized closed sets in order to extend many of the important properties of closed sets to a larger family. Dunham (1982) has established a generalized closure using Levine's generalized closed sets as Cl*.In 2016, Annalakshmi has introduced regular*-open (r*-open sets) using CI*. Later in 2016, Meenakshi P L 14 has introduced a class of new sets namely η^* - open sets, a union of r*-open sets, which is placed between δ -open set and open set. Meenakshi P L (2021) also introduced J*-closed sets and J**-closed sets. Its properties and characterization were established. Later, Malini R 13 (2022) has introduced J*P-closed sets and their properties are studied. In this paper, J*P-continuous functions are introduced.

1.Preliminaries:

Definition 1.1: Let (L,ρ) be a topological space. If D is a non-empty subset of (L,ρ) then the intersection of all closed sets containing D is called **closure of D** and is denoted by Cl(D). The union of all open sets contained in D is called **interior of D** and is denoted by int(D).

Definition 1.2:Let (L,ρ) be a topological space. A subset D of space (L,ρ) is called

- regular closed set (Stone, 1937)¹⁹ if D=Cl(int(D))
- semi-closed set (Levine, 1963)¹⁰ if int(Cl(D)) \subseteq D
- **pre-closed set** (Mashhour et al., 1982)¹² if $Cl(int(D)) \subseteq D$

The complements of the abovementioned sets are called **regular open**, **semi-open**, **and pre-open sets** respectively.

The intersection of all **regular closed** (resp. **semi-closed and pre-closed**) subsets of (L,ρ) containing D is called the **regular closure** (resp. **pre-closure and semi -closure**) of D and is denoted by rCl(D) (resp. $sCl(D),\alpha Cl(D)$, $\pi Cl(D)$, pCl(D) and spCl(D)).

Definition 1.3: The δ-interior (Velicko, 1968) of a subset D of L is the union of all regular open sets of L contained in D and is denoted by $int_{\delta}(D)$. The subset D is called δ-open if D= $int_{\delta}(D)$, i.e., a set is δ-open if it is the union of regular open sets, the complement of δ-open is called δ-closed.

Alternatively, a set $D \subseteq Y$ is δ -closed if $D = \delta Cl(D)$, where $\delta Cl(D)$ is the intersection of all regular closed sets of (L,ρ) containing D.

Definition 1.4: A subset D of a topological space (L,ρ) is called **generalized Closed** (briefly **g-closed**) (Levine, 1970) if $Cl(D) \subseteq M$ whenever $D \subseteq M$ and M is open in (L,ρ) . The complement of g-closed is a **g-open set.**

Definition 1.5: [Pious Annalakshmi, 2016]: Let (L,ρ) be a topological space. A subset D of (L,ρ) is called **regular*-open** (**or r*-open**) if D=int(Cl*(D)). The complement of regular*-open set is called **regular*-closed set.** The union of all regular*-open sets of L contained in D is called **regular*-interior** and is denoted by r^* int(D). The intersection of all regular*-closed sets of L containing D is called **regular*-closure** is denoted by r^* Cl(D).

Definition 1.6: [Meenakshi PL, 2019]: A subset D of a topological space (L,ρ) iscalled η^* -open set if it is a union of regular*-open sets (r*-open sets). The complement of a η^* -open set is called a η^* -closed set. A subset D of a topological space (L,ρ) is called η^* -Interior of D is the union of all η^* -open sets of L contained in D. We denote the symbol by η^* -Int(D). The intersection of all η^* -closed sets of L containing D is called η^* -closure and denoted by η^* -Cl(D).

Definition 1.7: A subset D of a topological space (L,ρ) is called

- 1. **generalized semi-closed** (briefly **gs-closed**) (Arya et al., 1990) ifsCl(D) \subseteq M whenever D \subseteq M and M is open in (L, ρ).
- 2. **regular generalized closed** (briefly **rg-closed**) (Palaniappan, et.al.,1993) if $Cl(D) \subseteq M$ whenever $D \subseteq M$ and M is regular open in (L,ρ) .
- 3. **regular weakly generalized closed** (briefly **rwg-closed**) (Nagaveni,1999) if $Cl(int(D)) \subseteq M$ whenever $D \subseteq M$ and M is regular open in (L,ρ) .
- 4. π -generalized closed (briefly π g-closed) (Dontchev et.al.,2000)if Cl(D) \subseteq M whenever D \subseteq M and M is π -open in (L, ρ) .

- 5. **generalized \delta-closed** (briefly **g\delta-closed**) (Dontchev, 2000) ifsCl(D) \subseteq M whenever D \subseteq M and M is δ -open in (L, ρ).
- 6. π -generalized semi-closed (briefly π gs-closed) (Aslim et.al.,2006)if sCl(D) \subseteq M whenever D \subseteq M and M is π -open in (L, ρ) .
- 7. π -generalized pre-closed (briefly π gp-closed) (Park, 2006)if pCl(D) \subseteq M whenever D \subseteq M and M is π -open in (L, ρ) .
- 8. π -generalized α -closed (briefly $\pi g \alpha$ -closed) (Janaki, 2009)if $\alpha Cl(D) \subseteq M$ whenever $D \subseteq M$ and M is π -open in (L, ρ) .
- 9. **J*-closed** [Meenakshi PL,2021] if η *Cl(D) \subseteq M whenever D \subseteq M and M is η *-open in (L, ρ).

Remark 1.8: A topological space (L,p) is said to be a

- 1. **T_{\delta}-space** (Dontchev, 2000) if every g δ -closed subset of (L, ρ) is δ -closed in (L, ρ).
- 2. $_{J*P}$ **T**_{δ}**-space** (Malini R,2022) when each J*P- closed set is δ -closed in (L,ρ) .
- 3. ${}_{g}T_{J*P}$ -space (Malini R,2022) when each g- closed set is J*P -closed in (L, ρ).
- 4. $_{\alpha g}T_{J^*P}$ -space (Malini R,2022) when each αg closed set is J^*P -closed in (L,ρ) .
- 5. ${}_{g\delta}T_{J^*P}$ -space (Malini R,2022) when each $g\delta$ closed set is J^*P -closed in (L,ρ) .
- 6. $_{gs}T_{J*P}$ -space (Malini R,2022) when each gs- closed set is J*P -closed in (L, ρ).

Remark 1.9:

- i. π -closed(open) \rightarrow regularclosed(open) \rightarrow δ -closed(open) \rightarrow η *-closed(open) \rightarrow closed(open) \rightarrow semi-closed(open) \rightarrow semi-preclosed(open).
- ii. π -closed(open) \rightarrow regular closed(open) \rightarrow δ -closed(open) \rightarrow η^* -closed(open) \rightarrow closed(open) \rightarrow closed(open).
- iii. π -closed(open) \rightarrow regular closed(open) \rightarrow δ -closed(open) \rightarrow η^* -closed(open) \rightarrow closed(open) \rightarrow g-closed(open).
- iv. π -closed(open) \rightarrow regular closed(open) \rightarrow δ -closed(open) \rightarrow η *-closed(open) \rightarrow closed(open) \rightarrow pre-closed(open).

Definition 1.10: A subset D is said to be J*P-closed if η *Cl(D) \subseteq M, whenever D \subseteq M and M is pre-open in (L, ρ). **Result 1.11:** For a subset D of (L, ρ)

1.Cl(Y - D) = Y - int(D)

2.int(Y - D) = Y - Cl(D)

Definition 1.12: A function $f:(L,\rho) \to (T,\sigma)$ is said to be

- strongly continuous (Levine, 1960) if the inverse image of every subset of (T, σ) is clopen in (L, ρ) .
- Continuous (Levine, 1970) if the inverse image of every closed set of (T, σ) is closed in (L, ρ) .
- &continuous (Noiri, 1980) if for every &closed set Vof (T, σ) , $f^{1}(V)$ is a &closed set of (L, ρ) .
- totally continuous (Jain, 1980) if the inverse image of every open set of (T, σ) is clopen in (L, ρ) .
- Super continuous (Munshi,1982) if for every closed set Vof (T, σ) , $f^{1}(V)$ is a \mathcal{E} -closed set of (L, ρ) .
- **g-continuous** (Balachandran et al.,) if for every closed set V in (T, σ) , $f^1(V)$ is a g-closed set in (L, ρ) .
- rg-continuous (Palaniappan,et.al.,)if f⁻¹(V) is a rg-closed set in (L,ρ) for every closed set V in (T, σ).
 gs-continuous (Devi et.al., 1993) if f⁻¹(V) is a gs-closed set in (L,ρ) for every closed set V in (T, σ).
- Contra continuous (Dontchev, 1996) if the inverse image of every closed set of (T, σ) is an open set in (L, ρ) .
- $\delta \mathbf{g}$ -continuous (Dontchev,1996) if $\mathbf{f}^{-1}(\mathbf{V})$ is a $\delta \mathbf{g}$ -closed set in (\mathbf{L}, ρ) for every closed set V in (\mathbf{T}, σ) .
- **gpr-continuous** (Gnanambal,1997) if $f^{-1}(V)$ is a gpr-closed set in (L,ρ) for every closed set V in (T,σ) .
- **rwg-continuous** (Nagaveni, 1999) if $f^{-1}(V)$ is a rwg-closed set in (L,ρ) for every closed set V in (T,σ) .
- $\mathbf{g}\mathcal{S}$ -continuous (Dontchev,2000) if $\mathbf{f}^1(\mathbf{V})$ is a $\mathbf{g}\mathcal{S}$ -closed set in (\mathbf{L}, ρ) for every closed set V in (\mathbf{T}, σ) .
- π gp-continuous (Park,2004) if $f^{-1}(V)$ is a π gp-closed set in (L,ρ) for every closed set V in (T,σ) .
- π gs-continuous (Aslim,2006) if $f^1(V)$ is a π gs-closed set in (L,ρ) for every closed set V in (T,σ) .
- $\pi g \alpha$ -continuous (Park, 2004) if $f^{-1}(V)$ is a $\pi g \alpha$ -closed set in (L, ρ) for every closed set V in (T, σ) .
- **rg-continuous** (Ekici et.al.,2007) if $f^{-1}(V)$ is a πg -closed set in (L, ρ) for every closed set V in (T, σ) .
- π gsp-continuous (Park,2004) if $f^1(V)$ is a π gsp-closed set in (L,ρ) for every closed set V in (T,σ) .
- gspr-continuous (Devi et.al., 1993) if $f^{-1}(V)$ is a gspr-closed set in (L,ρ) for every closed set V in (T,σ) .
- **g*s-continuous** (Pushpalatha et.al.,) if $f^{-1}(V)$ is a g*s-closed set in (L,ρ) for every closed set V in (T,σ) .
- δg^* -continuous (Pushpalatha et.al.,) if $f^1(V)$ is a δg^* -closed set in (L,ρ) for every closed set V in (T,σ) .

2.J*P-Continuous Functions in Topological Spaces

2.2 J*P-Continuous Functions

The J*P-Continuous Functions in the topological spaces are introduced and investigated here.

Definition 2.2.1

A function $f:(L,\rho) \to (T,\sigma)$ is said to be J*P-continuous if the inverse image of every closed set in (T,σ) is J*P-closed in (L,ρ)

Example 2.2.2

Consider $f:(L,\rho) \to (T,\sigma)$ be the into function defined by f(a)=a, f(b)=b and f(c)=a. Let $L=T=\{a,b,c\}$ with $\rho=\{L,\emptyset,\{a\},\{b\},\{a,b\},\{a,c\}\}\}$, $\sigma=\{T,\emptyset,\{a\},\{a,b\}\}$ and $\sigma^c=\{T,\emptyset,\{c\},\{b,c\}\}\}$. Then f is J*P-continuous function as $J*PC(L,\rho)=\{L,\emptyset,\{b\},\{c\},\{a,c\}\}\}$.

Proposition 2.2.3

A J*P-continuous function f: $(L, \rho) \to (T, \sigma)$ is a J-continuous function but not conversely.

Proof:

Given $f:(L,\rho) \to (T,\sigma)$ is a J*P-continuous function. Let V be any closed set in (T,σ) . Since f is J*P-continuous function, $f^1(V)$ is J*P-closed in (L,ρ) . Hence by proposition:2.2.5(Malini R [13]), $f^1(V)$ is J-closed in (L,ρ) . Hence f is J-continuous.

Counter Example 2.2.4

Let $f:(L,\rho) \to (T,\sigma)$ be the bijective function defined by f(a)=a, f(b)=c and f(c)=b. consider L=T={a,b,c} with $\rho = \{L,\emptyset,\{a\},\{a,b\},\{a,c\}\}$ and $\sigma = \{T,\emptyset,\{a\},\{b,c\}\}$. Here we have J*PC(L,ρ)={L, \emptyset ,{b,c}} and $\sigma = \{T,\emptyset,\{a\},\{b,c\}\}$. Then f is J-continuous as JC(L,ρ)=P(L,ρ) but not J*P-continuous function. Because for the closed set {a} in (T,σ) , the inverse image is not J*P-closed in (L,ρ) .

Proposition 2.2.5

A J*P-continuous function $f:(L,\rho) \to (T,\sigma)$ is a g-continuous function but not conversely.

Proof.

Given $f:(L,\rho) \to (T,\sigma)$ is a J*P-continuous function. Let V be any closed set in (T,σ) . Since f is J*P-continuous function, $f^1(V)$ is J*P-closed in (L,ρ) . Hence by proposition:2.2.13 (Malini R [13]), $f^1(V)$ is g-closed in (L,ρ) . Hence f is g-continuous.

Counter Example 2.2.6

Let $f:(L,\rho) \to (T,\sigma)$ be the bijective function defined by f(a)=c, f(b)=b and f(c)=a. consider L=T={a,b,c} with $\rho = \{L,\emptyset,\{a\},\{b,c\}\}$ and $\sigma = \{T,\emptyset,\{a\},\{b\},\{a,b\},\{a,c\}\}\}$. Here we have $J*PC(L,\rho)=\{L,\emptyset,\{a\},\{b,c\}\}\}$ and $\sigma=\{T,\emptyset,\{b\},\{c\},\{a,c\},\{b,c\}\}\}$. Then f is g-continuous as $gC(L,\rho)=P(L)$ but not J*P-continuous function. Because for the closed set $\{b\}$ in (T,σ) , the inverse image is not J*P-closed in (L,ρ) .

Proposition 2.2.7

A J*P-continuous function $f:(L,\rho)\to (T,\sigma)$ is a gs-continuous function but not conversely.

Proof:

Given $f:(L,\rho) \to (T,\sigma)$ is a J*P-continuous function. Let V be any closed set in (T,σ) . Since f is J*P-continuous function, $f^1(V)$ is J*P-closed in (L,ρ) . Hence by proposition:2.2.19 (Malini R [13]), $f^1(V)$ is gs-closed in (L,ρ) . Hence f is gs-continuous.

Counter Example 2.2.8

Proposition 2.2.9

A J*P-continuous function $f:(L, \rho) \to (T, \sigma)$ is a rg-continuous function but not conversely.

Proof.

Given $f:(L,\rho) \to (T,\sigma)$ is a J*P-continuous function. Let V be any closed set in (T,σ) . Since f is J*P-continuous function, $f^1(V)$ is J*P-closed in (L,ρ) . Hence by proposition:2.2.21 (Malini R [13]), $f^1(V)$ is rg-closed in (L,ρ) . Hence f is rg-continuous.

Counter Example 2.2.10

Let $f:(L,\rho) \to (T,\sigma)$ be the identity function defined by f(a)=a, f(b)=b and f(c)=c. consider L=T={a,b,c} with $\rho = \{L,\emptyset,\{a\}\}$ and $\sigma = \{T,\emptyset,\{a\},\{b,c\}\}$. Here we have J*PC(L,ρ)={L,Ø,{b,c}} and σ ={T, Ø, {a},{b,c}}. Then f is rg-continuous as rgC(L,ρ)=P(L) but not J*P-continuous function. Because for the closed set {a} in (T,σ) , the inverse image is not J*P-closed in (L,ρ) .

Proposition 2.2.11

A J*P-continuous function f: $(L, \rho) \to (T, \sigma)$ is a gpr-continuous function but not conversely.

Proof:

Given $f:(L,\rho)\to (T,\sigma)$ is a J*P-continuous function. Let V be any closed set in (T,σ) . Since f is J*P-continuous function, $f^1(V)$ is J*P-closed in (L,ρ) . Hence by proposition:2.2.25 (Malini R [13]), $f^1(V)$ is gpr-closed in (L,ρ) . Hence f is gpr-continuous.

Counter Example 2.2.12

Let $f:(L,\rho) \to (T,\sigma)$ be the into function defined by f(a)=a, f(b)=b and f(c)=b. consider L=T={a,b,c} with $\rho = \{L,\emptyset,\{a\},\{a,b\}\}$ and $\sigma = \{T,\emptyset,\{a\},\{a,b\},\{a,c\}\}$. Here we have J*PC(L,ρ)={L, \emptyset ,{b,c}} and $\mathscr{E}=\{T,\emptyset,\{b\},\{c\},\{a,c\},\{b,c\}\}\}$. Then f is gpr-continuous as gprC(L,ρ)=P(L) but not J*P-continuous function. Because for the closed set {a,c} in (T,σ) , $f^{-1}(\{a,c\})=\{a\}$ is not J*P-closed in (L,ρ) .

Proposition 2.2.13

A J*P-continuous function $f:(L,\rho)\to (T,\sigma)$ is a πg -continuous function but not conversely.

Proof

Given $f:(L,\rho)\to (T,\sigma)$ is a J*P-continuous function. Let V be any closed set in (T,σ) . Since f is J*P-continuous function, $f^1(V)$ is J*P-closed in (L,ρ) . Hence by proposition:2.2.29 (Malini R [13]), $f^1(V)$ is πg -closed in (L,ρ) . Hence f is πg -continuous.

Counter Example 2.2.14

Let $f:(L,\rho) \to (T,\sigma)$ be the identity function. consider $L=T=\{a,b,c\}$ with $\rho=\{L,\emptyset,\{a\}\}$ and $\sigma=\{T,\emptyset,\{a\},\{b\},\{a,b\}\}$. Here we have $J*PC(L,\rho)=\{L,\emptyset,\{b,c\}\}$ and $\sigma=\{T,\emptyset,\{c\},\{a,c\},\{b,c\}\}\}$. Then f is πg -continuous as $\pi gC(L,\rho)=P(L)$ but not J*P-continuous function. Because for the closed sets $\{c\}$ and $\{a,c\}$ in (T,σ) , the inverse images are not J*P-closed in (L,ρ) .

Theorem 2.2.15

A J*P-continuous function $f:(L,\rho) \to (T,\sigma)$ is a

- i. rwg-continuous function
- ii. π gp-continuous function
- iii. π gs-continuous function
- iv. π ga-continuous function
- v. gspr-continuous function
- vi. π gsp-continuous function.

The proof is obvious.

Remark 2.2.16

The converse of the above theorem is not true.

Counter Example 2.2.17

Consider the **Counter Example 2.2.14**, we have $\operatorname{rwgC}(L,\rho) = \operatorname{\pi gpC}(L,\rho) = \operatorname{\pi gsC}(L,\rho) = \operatorname{\pi gsC}(L,\rho) = \operatorname{gsprC}(L,\rho) = \operatorname{\pi gspC}(L,\rho) = \operatorname{\pi gspC}(L,\rho)$

Theorem 2.2.18

A function $f:(L,\rho)\to (T,\sigma)$ is J*P-continuous if and only if the inverse image of every open set in (T,σ) is J*P-open in (L,ρ) .

Proof:

Necessity:

Let $f:(L,\rho) \to (T,\sigma)$ be the J*P-continuous function and V be a open set in (T,σ) . Then T-V is closed set in (T,σ) . Since f is J*P-continuous, $f^1(T-V) = T - f^1(V)$ is a J*P-closed in (L,ρ) . Hence $f^1(V)$ is J*P-open in (L,ρ) .

Sufficiency:

Assume that $f^1(U)$ is J*P-open in (L, ρ) for the each open set U in (T, σ) . Let U be the closed set in (T, σ) . Then T-U is the open set in (T, σ) . By our assumption, $f^1(T-U) = T - f^1(U)$ is J*P-open in (L, ρ) which implies that $f^1(U)$ is J*P-closed in (L, ρ) . Hence f is J*P-continuous.

Proposition 2.2.19

A super continuous function $f:(L,\rho)\to (T,\sigma)$ is a J*P-continuous function but not conversely.

Proof:

Given $f:(L,\rho) \to (T,\sigma)$ is a super continuous function. Let V be any closed set in (T,σ) . Since f is super continuous function, $f^1(V)$ is δ -closed in (L,ρ) . Hence by proposition:2.2.11 (Malini R [13]), $f^1(V)$ is J*P-closed in (L,ρ) . Hence f is J*P-continuous.

Remark 2.2.20

The converse of the above proposition is not true. Hence it can be seen from the following Counter Example.

Counter Example 2.2.21

Let $f:(L,\rho) \to (T,\sigma)$ be the into function defined by f(a)=a, f(b)=b and f(c)=b. consider $L=T=\{a,b,c\}$ with $\rho=\{L,\emptyset,\{a\},\{a,b\}\}$ and $\sigma=\{T,\emptyset,\{a\}\}$. We have $\sigma^c=\{T,\emptyset,\{b,c\}\}$ and $\delta C(L,\rho)=\{L,\emptyset\}$. Then f is J*P-continuous function as J*PC(L,ρ)={ $L,\emptyset,\{b,c\}$ } but not super continuous function. Because for the closed set {b,c} in (T,σ) , the inverse image is not a δ -closed in (L,ρ) .

Remark 2.2.22

From the above discussion, we have the following diagram:

If $f:(L,\rho) \to (T,\sigma)$ is a $g\delta$ -continuous function and (L,ρ) is a $g\delta$ T_{J*P}-space. Then f is J*P-continuous.

Proof:

Given $f:(L,\rho) \to (T,\sigma)$ is a g δ -continuous function. Let V be any closed set in (T,σ) . Since f is g δ -continuous function, $f^1(V)$ is g δ -closed in (L,ρ) and (L,ρ) is a ${}_{g\delta}T_{J^*P}$ -space. Therefore $f^1(V)$ is J^*P -closed in (L,ρ) . Hence f is J^*P -continuous.

Result 2.2.24

- i. If $f:(L,\rho) \to (T,\sigma)$ is a gs-continuous function and (L,ρ) is a gsT_{J*P} -space. Then f is J*P-continuous.
- ii. If $f:(L,\rho) \to (T,\sigma)$ is a αg -continuous function and (L,ρ) is a αg T_{J*P}-space. Then f is J*P-continuous.
- iii. If $f:(L,\rho) \to (T,\sigma)$ is a g-continuous function and (L,ρ) is a ${}_{g}T_{J*P}$ -space. Then f is J*P-continuous.

Proof:

The proof is same as the **proposition 2.2.23**.

Proposition 2.2.25

If $f:(L,\rho) \to (T,\sigma)$ is a J*P-continuous function and (L,ρ) is a _{J*P}T $_{\delta}$ -space. Then f is super continuous.

Proof:

Given $f:(L,\rho) \to (T,\sigma)$ is a J*P-continuous function. Let V be any closed set in (T,σ) . Since f is J*P-continuous function, $f^1(V)$ is J*P-closed in (L,ρ) and (L,ρ) is a $_{J^*P}T_{\delta}$ -space. Therefore $f^1(V)$ is δ -closed in (L,ρ) . Hence f is super continuous.

Theorem 2.2.26

For every subset D of (L, ρ) , $f(J^*Pcl(D)) \subseteq cl(f(D))$ if $f:(L, \rho) \to (T, \sigma)$ is a J*P-continuous function.

Proof:

Given $f:(\mathcal{L},\rho)\to (\mathcal{T},\sigma)$ is a J*P-continuous function and D is any subset of (\mathcal{L},ρ) . Then cl(f(D)) is a closed set in (\mathcal{T},σ) . Since f is J*P-continuous function, we get $f^1(cl(f(D)))$ is a J*P-closed set in (\mathcal{L},ρ) ------(A). we know $f(D)\subseteq cl(f(D))$ which implies that $D\subseteq f^1(cl(f(D)))$. From (A), we get $f^1(cl(f(D)))$ is a J*P-closed set containing D. By the definition "The J*P-closure of D of a topological space (\mathcal{L},ρ) is defined as: $J^*Pcl(D)=\bigcap \{F\subseteq Y:D\subseteq F \text{ and } F\in J^*PC(Y,\rho)\}$ ", we have $J^*Pcl(D)\subseteq f^1(cl(f(D)))$ which implies that $f(J^*Pcl(D))\subseteq cl(f(D))$. Hence proved.

References:

- 1) Abd, M.E., Monsef, E.L., EI-Deeb, S.N. and Mohmoud, R.A. (1983), β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12,77-90.
- 2) Aslim, G., Caksu Guler, A. and Noiri, T. (2006) On πgs-closed sets in topological spaces, Acta. Math. Hungar., 112(4), 275-283.
- 3) Baker, C.W., (1996) On preserving g-closed sets, Kyungpook Math. J., 36, 195-199
- 4) Balachandran, K., Sundaram, P. And Maki, H. (1990) On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 12,5-13.
- 5) Caldas, M., (1993) On g-closed sets and g-continuous Mappings, Kyungpook Math. J., 33(2), 205-209.
- 6) Chawalit,B.,(2003a) Generalized continuous function from any topological space into product,Naresuan Univ.J.,11(2),93-98.
- 7) Dontchev, J (1996) Contra continuous functions and strongly S-closed spaces, International Journal of Mathematics and Mathematical Sciences, 19, 303-310.
- 8) Dunham, W., (1982) A New Closure Operator for Non-TI Topologies, Kyungpook Mathematical Journal, 22(1), 55-60.
- 9) Ekici, E. And Baker, C.W. (2007), On π g-closed sets and continuity, Kochi. J. of Mathematics, 2,35-42.
- 10) Levine, N. (1960) Strong continuity in topological spaces, Amer. Math. Monthly, 67, 269-275.
- 11) Levine, N. (1963) Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70, 36-41.

- 12) Mashhour, A.S. et.al., (1982) On pre continuous and weak pre continuous functions, Proc. Math. Phys. Soc. Egypt, 53, 47-53.
- 13) Malini, R.(2022), J*P-Closed sets in topological spaces, Avinashilingam Institute for Home Science and Higher Education for women, Coimbatore.
- 14) Meenakshi, PL. and sivakamasundari. K., J-closed set in topological space, JETIR, Bol vol 6 (5) (2019), 193-201.
- 15) Meenakshi, PL. and sivakamasundari. K., J-open set in topological space, Research Highlights (2020), Avinashilingam Institute for Home Science and Higher Education for women, Coimbatore.
- 16) Meenakshi, PL. (2022), J-continuous functions in topological spaces, malaya Journal of Matematik, Vol. S, No. 1, 206-213, 2020.
- 17) Munshi, B.M. and Bassan, D.S.(1982) Super-Continuous Mappings, Indian J. Pure Appl.Math.,13(2),229-236.
- 18) Noiri, T., (1980) On δ -continuous functions, J. Korean Math. Soc., 16,161-166.
- 19) Stone, M. (1937), Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41, 374-481.
- 20) Sundarm, P. and N. Nagaveni, (1998) On weakly generalized continuous maps, Far East J. Math. Sci., 6, 903-912.

21)