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Chapter

Evaluation of Principal Component
Analysis Variants to Assess Their
Suitability for Mobile Malware
Detection
Padmavathi Ganapathi, Shanmugapriya Dhathathri and

Roshni Arumugam

Abstract

Principal component analysis (PCA) is an unsupervised machine learning
algorithm that plays a vital role in reducing the dimensions of the data in building an
appropriate machine learning model. It is a statistical process that transforms the data
containing correlated features into a set of uncorrelated features with the help of
orthogonal transformations. Unsupervised machine learning is a concept of self-
learning method that involves unlabelled data to identify hidden patterns. PCA con-
verts the data features from a high dimensional space into a low dimensional space.
PCA also acts as a feature extraction method since it transforms the ‘n’ number of
features into ‘m’ number of principal components (PCs; m < n). Mobile Malware is
increasing tremendously in the digital era due to the growth of android mobile users
and android applications. Some of the mobile malware are viruses, Trojan horses,
worms, adware, spyware, ransomware, riskware, banking malware, SMS malware,
keylogger, and many more. To automate the process of detecting mobile malware
without human intervention, machine learning methods are applied to discover the
malware more precisely. Specifically, unsupervised machine learning helps to uncover
the hidden patterns to detect anomalies in the data. In discovering hidden patterns of
malware, PCA is an important dimensionality reduction technique that can be applied
to transform the features into PCs containing important feature values. So, by
implementing PCA, the correlated features are transformed into uncorrelated features
automatically to explore the anomalies in the data effectively. This book chapter
explains all the variants of the PCA, including all linear and non-linear methods of
PCA and their suitability in applying to mobile malware detection. A case study on
mobile malware detection with variants of PCA using machine learning techniques in
CICMalDroid_2020 dataset has been experimented. Based on the experimental
results, for the given dataset, normal PCA is suitable to detect the malware data points
and forms an optimal cluster.

Keywords: cyber security, dimensionality reduction, machine learning, mobile
malware, principal component analysis, variants of PCA
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1. Introduction

PCA is a statistical technique for compressing the content of large datasets into a
smaller number of summary indices that can be examined and evaluated more quickly.
Principal component analysis (PCA) is a multivariate statistical methodology that is
frequently utilized nowadays [1]. It is a factor analysis-based statistical method that is
widely used in the disciplines of pattern recognition and signal processing. It is a
dimensionality reduction technique that condenses a large number of variables into a
smaller set while maintaining the majority of the larger dataset. Because smaller
datasets are easier to examine and visualize, machine learning algorithms can assess
data more efficiently and rapidly without dealing with extra impediments.

PCA is also commonly employed in exploratory data analysis and prediction model
construction. It is frequently used for dimensionality reduction, which involves
projecting each data point onto only the first few principal components (PCs) in order
to obtain lower-dimensional data with the least amount of variance. The first PC is a

direction that lowers the predicted data variance. The ith PC minimizes the variance of
the projected data by being the inverse of the first i� 1 PC.

The primary components of the data covariance matrix can be proven to be
eigenvectors. As a result, Eigen decomposition of the data covariance matrix or sin-
gular value decomposition of the data matrix is typically used to extract primary
components. PCA, closely related to factor analysis, is the most fundamental of the
real eigenvector-based multivariate techniques. On the other hand, factor analysis
makes additional domain-specific assumptions about the underlying structure and
solves matrix eigenvectors. Canonical correlation analysis (CCA) is also tied to PCA.
PCA suggests a new orthogonal coordinate system for defining variance in a single
dataset, whereas CCA proposes coordinate systems for describing cross-covariance
across two datasets.

The purpose of the research is to explore and suggest a suitable type of PCA to reduce
the data dimensions, which helps to identify the malware data points significantly.

2. Concept of PCA

PCA attempts to project high-dimensional data onto the feasible smallest-
dimensional space. PCA takes into account the variance of each character because a
high attribute indicates good class separation, and so minimizes dimensionality. Image
processing, movie recommendation systems, and optimizing power distribution
across numerous communication channels are some of PCA real-world use cases. It
preserves the essential variables while rejecting the less important ones because it is a
feature extraction approach [2].

The mathematical concepts employed in the PCA are:

• Variance and covariance

• Eigenvalues and eigenvectors

2.1 Common terms used in PCA

The following are the standard terms widely used in the PCA are discussed
below:
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Dimensionality: The dimensionality of a dataset refers to the number of
characteristics or variables in it. It refers to the total number of columns in a
dataset.

Correlation: It expresses the degree to which two variables are intertwined. For
example, when one variable is changed, the other variable is also changed. The
correlation value can be anywhere between �1 and +1. If the variables are
inversely proportional to each other, the result is �1, and if they are directly
proportional to each other, the result is +1.

Orthogonal: As a result, the variables have no relationship with one another, and
their correlation is zero.

Eigen vectors: If Av is the scalar multiple of v and one has a non-zero vector v and
a square matrix M, then v is an eigenvector.

Eigen values: An Eigenvalue is a number that indicates the variance in a specific
direction.

Variance: A variance is used to calculate the fluctuation of data points dispersed
over the multidimensional graph. In mathematics, it is the average squared
deviation from the mean value. The following formula is used to determine
Var(x):

Var xð Þ ¼

P

Xi�XÞ
2

�

N
(1)

Covariance: Covariance can determine the degree to which comparable
components from two sets of grouped data move in the same direction. It is used
to uncover relationships and correlations between dataset attributes in layman’s
terms. The following is the formula for calculating the Cov (x, y):

Cov xð Þ ¼

P

Xi � XÞ Y i � Y
� �

�

N
(2)

Covariance matrix: The covariance matrix shows how two variables are related.
Principal components: The new set of data variables created from the original
dataset is referred to as PCs. The newly created data variables are pretty valuable
and self-contained. They have access to all of the essential data from the original
variables.

3. Principal components algorithm

As previously said, the PCs are the converted new characteristics or the result of
PCA. The total number of PCs in the dataset is equal or fewer than the total number of
original features. Some of the features of these primary components are as follows:

• The significant component must be a linear combination of the original features,
and these components must be orthogonal, meaning there must be no link
between the two variables.

• As the number of components increases from 1 to n, their relevance decreases,
showing that the PC1 is the most essential and the PCn is the least important.
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3.1 Steps involved in the PCA algorithm

To carry out the process of PCA the following are the five significant steps to be
followed [3]:

I. Standardization

II. Covariance matrix computation

III. Computation of eigenvectors and eigenvalues of the covariance matrix to
identify the PCs

IV. Feature vector creation

V. Recast the data along the axes of the PC

3.1.1 Standardization

This step normalizes a set of continuous beginning variables so that their effects on
the analysis are consistent.

Standardization is essential before PCA since it is sensitive to the variances of the
original variables. Suppose the initial variable ranges differ significantly. In that case,
the variables with more comprehensive ranges will outnumber those with smaller
ranges (for example, a variable ranging from 0 to 100 will outnumber a variable
ranging from 0 to 1), resulting in a skewed outcome. As a result, converting the
data to equal scales could be a possible solution to this issue. Subtracting the mean
and dividing by the standard deviation for each variable value can be done
numerically.

Z ¼
Value�mean

Standard deviation
(3)

After the standardization is complete, all variables will be changed to the
same scale.

3.1.2 Covariance matrix computation

The goal of this step is to determine how the variables in the input dataset differ
from the mean with each other and whether there is a link between them. Because the
variables may become so intertwined that they contain redundant information, the
covariance matrix is constructed to find these correlations.

The covariance matrix, a symmetric matrix with p� p entries, contains all possible
pairs of starting variables and their covariances (where p is the number of
dimensions). The covariance matrix for a three-dimensional dataset with three
variables x, y, and z is a 3 � 3 matrix of the form:

Cov x, xð Þ Cov x, y
� �

Cov x, zð Þ

Cov y,x
� �

Cov y, y
� �

Cov y, z
� �

Cov z,xð Þ Cov z, y
� �

Cov z, zð Þ

(4)
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The variances of each starting variable are shown on the main diagonal (top left
to bottom right) since a variable covariance with itself equals its variance (Cov(a,
a) = Var(a)). The entries of the covariance matrix are symmetric about the principal
diagonal because covariance is commutative (Cov(a,b) = Cov(b,a)). This shows that
the triangle’s upper and lower triangular parts are equal.

The following are the signs of covariance that are related to correlation:

• If the sign of covariance is positive, the two variables will rise or fall in lockstep
(i.e., correlated with each other)

• When the sign of covariance is negative, one variable rises while the other falls
(i.e., inversely correlated)

3.1.3 Computation of eigenvectors and eigenvalues of the covariance matrix to identify the
principal components

In order to uncover the underlying components of the data, eigenvectors and
eigenvalues are linear algebra concepts that must be computed from the covariance
matrix. Before go into the details of these themes, let us establish what “principal
components” mean.

PCs are new variables created by merging or linearly combining essential variables.
The new variables (i.e., primary components) are uncorrelated due to these combina-
tions, and the majority of the information from the initial variables is squeezed or
compressed into the first components. So, 10-dimensional data provides ten primary
components. However, PCA seeks to place as much information as possible in the first
component, then as little information in the second, and so on, until the result looks
like Figure 1 below:

One can minimize dimensionality without granting too much information by
splitting data into critical components and eliminating components with insufficient
data. The remaining components can be regarded as new variables. Because the
essential components are produced as linear combinations of the original variables,
they are less interpretable and have no significant relevance.

The data directions that explain the most variance, or the lines that include the
most data information, are considered essential components in geometric terms. In

Figure 1.
Principal components vs. percentage of explained variances.
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this case, the higher a line variance, the greater the dispersion of data points, and the
greater the dispersion along a line, the more information it retains. Put another way;
consider the essential components as additional dimensions that provide the proper
viewpoint for perceiving and processing data, making it easier to spot differences
between observations.

3.1.3.1 Constructing principal components with PCA

Because there are as many variables in the data as there are PCs, the first PC is
designed to provide the possible variance in the dataset.

The second major component is determined in the same fashion as the first, except
it must be uncorrelated (i.e., parallel to) and account for the following most signifi-
cant variance. This technique is repeated until the number of variables equals the
number of essential components.

3.1.3.2 Finding Eigen values and Eigen vectors

After one has determined the essential components, let us discuss eigenvalues and
eigenvectors. Remember that eigenvalues and eigenvectors are always obtained in
pairs, with one eigenvalue per eigenvector. In addition, the number is the same as the
number of data dimensions. There are three variables in a three-dimensional dataset.
Hence there are three eigenvectors with three corresponding eigenvalues. PCs are the
eigenvectors of the covariance matrix, and they are the directions of the axis with the
most variation. Eigenvalues are the coefficients associated with eigenvectors, whereas
eigenvalues are the coefficients attached to eigenvectors. The significant components
are ordered in order of significance by arranging the eigenvectors in order of their
eigenvalues, from highest to lowest.

Assume the dataset is two-dimensional, with two variables x and y, and the
covariance matrix eigenvectors and eigenvalues are:

v1 ¼
0:6778736

0:7351785
λ1 ¼ 1:284028 (5)

v2 ¼
�0:7351785

0:6778736
λ2 ¼ 0:04908323 (6)

The outcome of sorting the eigenvalues in ascending order is > λ2 , suggesting that
the eigenvector of the first PC is v1 and the eigenvector of the second PC is v2. To find
the proportion of variance (information) that each component accounts for, divide
each component eigenvalue by the total eigenvalues. In the scenario mentioned above,
PC1 and PC2 are responsible for 96 and 4% of the data fluctuation.

3.1.4 Feature vector creation

The key components can be identified in order of importance by computing the
eigenvectors and sorting them by their eigenvalues in decreasing order. One must
decide whether to preserve all of these components or reject those with low eigen-
values and then use the remaining ones to construct the feature vector–matrix at this
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phase. As a result, the feature vector is just a matrix with the appropriate components
eigenvectors as columns. Because only p eigenvectors (components) are left out of n,
the final dataset will only have p dimensions.

Combining both eigenvectors v1 and v2 creates a feature vector, as seen in the
example above:

0:6778736 �0:7351785

0:7351785 0:6778736

� �

(7)

Alternatively, one can omit the less relevant eigenvector v2 and solely utilize v1 to
generate a feature vector:

0:6778736

0:7351785

� �

(8)

By eliminating the eigenvector v2, the final dataset dimensionality will be reduced
by one, resulting in a loss of information. The loss will be minimal because v2 only
carried 4% of the data, and v1 will keep 96% of the data.

The individual must decide whether to maintain all components or delete
those not as significant, like in the previous scenario. Because leaving out less
significant components is unnecessary if all one wants to do is explain the data in
terms of new uncorrelated variables (PCs) without attempting to reduce
dimensionality.

3.1.5 Recast the data along the axes of the principal component

The data from previous phases is unchanged except for standardization; all
required is to select the primary components and generate the feature vector; how-
ever, the input dataset is always in terms of the original axes (i.e., in terms of the
initial variables). The third phase, PCA, shifts data from the original axis to the ones
indicated by the significant components using a feature vector constructed from the
covariance matrix eigenvectors. This is done by multiplying the original dataset
transpose by the feature vector transpose. Therefore,

Final dataset ¼ feature vectorTstandardized original datasetT (9)

4. When to apply PCA?

PCA is widely applicable for unsupervised machine learning techniques, which
helps to reduce the dimensions of the large data where the dataset does not contain the
labelled column. The following are some of the situations where the PCA can be
applied [4]:

Case 1: One wants to limit the number of variables but cannot figure out
which ones to leave out entirely?
Case 2: One wants to make sure variables are unrelated to one another?
Case 3: One thought, if the independent variables are less interpretable?
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4.1 Properties of principal components

Suppose the number of primary variables that make up the PCs is less than or equal
to the number of variables or data points. In that case, the PCA is complete. The
following are the characteristics of primary components [5]:

• They are a set of primary data variables projected in various directions and have
qualities similar to those of the original variables.

• In machine learning and data science, dimensionality reduction is a common
technique.

• They are orthogonal.

• As one finds PC one by one, the variance or variation of the PCs reduces. This
means the first PC is the most volatile, while the last PC is the least volatile.

4.2 Applications of PCA

PCA has a wide range of applications, including the following:

• Face recognition

• Computer vision

• Image compression

• Bioinformatics

• Hidden pattern recognition

• Exploratory data analysis

• Noise filtering

• Finance, data mining, psychology, etc.

4.3 Pros and cons of principal component analysis

For any technique, there will be both positive and negative phases. Likewise, in
PCA, its advantages and limitations are the following [6].

4.3.1 Advantages of principal component analysis

Some of the advantages of PCA are:

• Easy to compute

• Speeds up the performance of machine learning algorithms
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• Counteracts the issues of high-dimensional data

• Remove correlated features

• Improves the accuracy of the algorithm

• Reduces overfitting

• Enhance visualization

4.3.2 Limitations of principal component analysis

Some of the limitations of PCA are:

• Independent variables become less interpretable

• Data standardization must perform before PCA

• The trade-off between information loss and dimensionality reduction

• Difficult to evaluate the covariance in an appropriate way

• It is sensitive to scale the features

• PCA is not robust against outliers

• PCA assumes a linear relationship between features

5. Variants of PCA

To overcome the limitations of PCA, there are different types of PCA are available
that suit for the appropriate type of data are listed below [7, 8]:

• Normal PCA

• Sparse PCA

• Randomized PCA

• Incremental PCA

• Kernel PCA

5.1 Normal PCA

PCA in Machine learning is applied for unsupervised learning to reduce the
dimension of the data from high dimensional space to low dimensional space. The
above section discusses the standard normal PCA, which applies to most of the
datasets as a default form of PCA using unsupervised learning. To construct any type
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of PCA especially for normal PCA the above discussed five significant steps are
involved for dimensionality reduction [9, 10]. The following sessions briefly discuss
the other variants of PCA in machine learning and its characteristics.

5.2 Sparse PCA

One of PCA significant flaws is that the PCs are dense in most circumstances,
implying that the majority of the loadings are non-zero. The model is difficult to
interpret since each significant component is a linear combination of all the original
variables. However, each axis may correspond to a specific gene in machine learning
tasks such as gene analytics. In such instances, one can readily analyse the model and
comprehend the physical meaning of the loading and the PCs if the majority of the
entries in the loadings are zeros. Sparse PCA is a variant of PCA that uses sparse
loading to build interpretable models. In Sparse PCA, each PC is a linear combination
of a subset of the original variables.

5.3 Randomized PCA

The PCs are estimated using the low-rank matrix approximation in traditional
PCA. However, this strategy becomes costly with large datasets and makes the entire
process challenging to scale. One can approximate the first K PCs faster than tradi-
tional PCA by randomizing how the dataset singular value decomposition occurs.

5.4 Incremental PCA

The above-described PCA variants need the entire training dataset to be stored in
memory. Incremental PCA can be employed when the dataset is too huge to fit in
memory. It divides the dataset into mini-batches, each of which can fit into memory,
and then feed each mini-batch to the incremental PCA algorithm one at a time.

5.5 Kernel PCA

A typical linear technique is PCA. It works well with linearly separable datasets.
However, if the dataset contains non-linear relationships, the results will be
unfavourable. Kernel PCA is a technique that uses the “kernel trick” to project linearly
inseparable data into a higher dimension where it may be separated linearly. Many
different kernels are commonly employed, including linear, polynomial, RBF, and
sigmoid.

6. Case study on variants of PCA in mobile malware detection

To explore the dimensionality reduction using normal PCA and its variants for
mobile malware detection in the CICMalDroid_2020 dataset [11] are experimented.
The dataset is taken from the University of New Brunswick (UNB), Canadian Insti-
tute of Cyber Security (CIC). The dataset consists of 11,598 records with 471 feature
attributes. The dataset commences with 17,341 Android samples gathered from
VirusTotal, the Contagio security blog, AMD, MalDozer, and other sources. Samples
were obtained between December 2017 and December 2018. Detecting Android apps
with malicious data points is crucial for cyber security specialists. There are five key
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categories in the dataset includes, Adware, Banking malware, SMS malware,
Riskware, and Benign are the different forms of malicious software. The experiment is
carried out in a Python Jupyter notebook environment using sklearn library [12–16].

6.1 Results of PCA in machine learning for mobile malware detection

The following are the outcomes of normal PCA and variants of PCA where the 471
feature dimensions are reduced into two PCs are visualized below. Figure 2 shows the
importing data into the Python Jupyter notebook environment.

Figure 3 shows the data pre-processing to check whether the data contains any
null values or not. Data pre-processing is an important step in the machine learning
process, and it helps to purify the irrelevant and undefined raw data into the relevant
defined form.

Figure 3 depicts that the dataset does not contain any null values, and it is fit for
further processing (i.e.) from the results value ‘0’indicates there are no null values in
the data.

Figure 4 shows the removal of duplicate data values to ensure the originality of the
dataset. Duplicate data leads to misinterpretation of the results.

Figure 2.
Data import—CICMalDroid_2020 dataset.

Figure 3.
Check if the data contains any null values or not.
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Figure 4 depicts that out of 11,598 records, 72 were duplicated, and the duplicated
records were dropped. After dropping the 72 duplicate records, now the dataset
consists of 11,526 instances with 471 features.

Figure 5 shows the data splitting for training and testing so that the machine
learning model can detect and cluster the mobile malware data points in the dataset.
Splitting the data for training and testing is a significant phase in the machine learning
process. So, the data will be adequately trained and provide the best results in testing,
which helps to derive a high efficacy rate.

Figure 5 explains that the dataset is divided into 70% for training and 30% for
testing (i.e.) out of 11,526 records, 8068 are used for training and 3458 samples are
used for testing the model. Now, the dataset is suitable to perform the PCA with the
machine learning technique.

Figure 6 shows the feature scaling; before applying PCA, one must scale the data
so that the data can be properly scaled within a particular range appropriately to
support data modelling. Without incorporating feature scaling, during the model
development the data takes more time to fit into the prescribed model form.

Figure 6, depicts the method for feature scaling using MinMaxScaler and standard
scalar to bring the scattered data points within a typical specified range. Hence, the
data is further applicable for PCA.

Figure 4.
Drop duplicate values.

Figure 5.
Train and test split.

Figure 6.
Feature scaling.
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Figure 7 shows the normal PCA method used in the dataset to reduce the 471
featured dimensions into two PCs. It also shows that from the explained variance PC1
has more information than PC2. Normal PCA is the default form of PCA, more
suitable for all kinds of data to reduce the dimensions effectively without any infor-
mation loss.

Figure 8 shows the normal PCA results of two PCs as PC1 and PC2.
Figure 8 represents that the total 471 features are reduced into two PCs PC1 and

PC2, without removing any of the data features. This helps to train the data and
develop the machine learning model effectively with less memory consumption.

Figure 9 shows the method of sparse PCA in mobile malware data. Similarly, the
sparse PCA is widely suited for sparse data so that the 471 data features are reduced
into two set of PCs PC1 and PC2.

Figure 10 shows the method of randomized PCA in mobile malware data. Ran-
domized PCA is suitable for big data processing so that the features are randomly
selected to derive the two set of PCs PC1 and PC2.

Figure 11 shows the method of incremental PCA in mobile malware data. Incre-
mental PCA is similar to randomized PCA, but it gradually increases the batch size to
reduce the total number of features into two set of PCs PC1 and PC2.

Figure 12 shows the method of kernel PCA in mobile malware data. Kernel PCA is
widely applicable for non-linear data modelling. It also helps to reduce the dimensions
of the data based on the kernel function like gamma etc. to derive the two or more sets
of PCs PC1and PC2.

In this case study, the 471 data features of CICMalDroid_2020 dataset is
transformed into two set of PCs PC1 and PC2 for all variants of PCA, depending upon
the suitability of the data values.

Figure 7.
Normal PCA.

Figure 8.
Normal PCA with PC1 and PC2.
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Figure 10.
Randomized PCA.

Figure 9.
Sparse PCA.
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6.2 Observations

Based on the results obtained from the variants of PCA for mobile malware detec-
tion depicts that for the given CICMalDroid_2020 dataset is discussed. It is a numer-
ical labelled data that highly supports normal standard PCA technique. It helps to
reduce the dimensions of the PCA from 471 features into two sets of PCs (PC1 and
PC2). It supports to processing the data model quickly and forms the clusters

Figure 11.
Incremental PCA.

Figure 12.
Kernel PCA.
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effectively. Figure 13 shows the group of clusters that discovered the five different
malware involved in the CICMalDroid_2020 dataset based on PC1containing huge
information about the dataset of normal PCA.

Table 1 shows the size of malware samples available under the category of
Adware, Banking malware, SMS malware, Riskware, and Benign.

Hence, the other variants of PCA, such as sparse PCA are applicable for sparse
data, randomized PCA and incremental PCA are suitable for big data processing and
kernel PCA is widely supported by non-linear data modelling. So, depending upon the
type of data and their accessibility, the appropriate type of PCA is incorporated into
machine learning algorithms specifically for unsupervised learning for dimensionality
reduction to develop a suitable predictive model. It also helps to identify the hidden
patterns of the data effectively.

7. Conclusion

This book chapter on “Evaluation of PCA Variants to assess their suitability for
Mobile Malware Detection” describes briefly the concept of PCA, the common

Figure 13.
Class of malwares in the CICMalDroid_2020 dataset.

Class Type of malware Size

1 Adware 1253

2 Banking malware 2100

3 SMS malware 3904

4 Riskware 2546

5 Benign 1795

Table 1.
CICMalDroid_2020 dataset—sample size
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terminologies involved in PCA, PCs in PCA, mathematical properties of PCA, steps
involved in PCA algorithm, explanation about the process of developing the PCA
model in a machine learning perspective, applications of PCA, advantages and limita-
tions of PCA. Different variants of PCA are experimented with a small case study by
exploring the various type of PCA. This helps to find out the suitable variant of PCA
for mobile malware detection in the CICMalDroid_2020 dataset based on the machine
learning framework. As an outcome, for the given dataset, the normal standard PCA
provides the appropriate results for the PCs to discover the malware data points
accurately. Thus, this chapter will be a ready reckoner for the learners to know about
the concept of PCA in machine learning, and its variants suitable for mobile malware
detection are discussed in detail.

Acknowledgements

This work is supported by the DST-CURIE-AI project during 2021–2023 by the
Centre for Cyber Intelligence established under the Centre for Machine Learning and
Intelligence, Avinashilingam Institute for Home Science and Higher Education for
Women, Coimbatore-43, Tamilnadu, India.

Conflict of interest

The authors declare no conflict of interest.

Nomenclature

PCA Principal component analysis
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UNB University of New Brunswick
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